

City of Kuna P.O. Box 13 Kuna, Idaho 83634 hone: (208) 922-5274

Phone: (208) 922-5274 Fax: (208) 922-5989 www.kunacity.id.gov

Agency Notification

January 29, 2021

Notice is hereby given by the City of Kuna that the following action(s) are under consideration:

File Number & Case Name:	20-07-AN (Annexation) & 20-16-S (Preliminary Plat) – Arrowood Heights Subdivision
Project Description	Wendy Shrief of JUB Engineers, on behalf of Hayden Homes, requests approval for Annexation of approximately 53.16 ac. into Kuna City Limits with 33.71 ac. R-6 (Medium Density Residential); 7.59 ac. R-8 (Medium Density Residential) and 9.79 ac. C-1 (Neighborhood Commercial) zoning designations. Applicant also requests Preliminary Plat approval to subdivide approximately 41.3 ac. into 177 Single-Family Residential lots with an R-6 & R-8 (Med. Density Residential) zoning, 26 Common Lots & four (four) shared driveways. C-1 (Neighborhood Commercial) to be developed in the future (APN: \$1303417354). Section 3, Township 2 North, Range 1 West.
Site Location	7445 S Ten Mile Road, Kuna 83634.
Applicant	Hayden Homes 1406 N Main Street, Suite 109 Meridian, ID 83642 208.869.9785
Representative	Wendy Shrief, JUB Engineers 2760 W Excursion Lane, Suite 400 Meridian, ID 83642 208.376.7330 wshrief@jub.com
Tentative Public Hearing Date	Tuesday, March 23, 2021 6:00 PM Council Chambers within Kuna City Hall, located at 751 W. 4 th Street, Kuna, ID 83634
Staff Contact	Jessica Reid Kuna P&Z Staff 208.387.7731 jreid@kunaid.gov

Enclosed is information to assist you with your consideration and response. All comments as to how this action may affect the service(s) your agency provides, is greatly appreciated. Please contact staff with any questions. **If your agency needs different or additional information to review and provide comments please notify our office and they will be sent to you.** If your agency needs additional time for review, please let our office know as soon as possible. *No response within 15 business days will indicate you have no objection or comments for this project.*

J·U·B ENGINEERS, INC.

J-U-B COMPANIES

Residential Lots & 26 Common lots on updated Pre Plat Color Rendering

01.29.2021

October 30, 2020

City of Kuna 763 W. Avalon Kuna, ID 83634

RE: ARROWOOD HEIGHTS SUBDIVISION- PRELIMINARY PLAT, AND ANNEXATION AND ZONING APPLICATIONS

To Whom It May Concern:

On behalf of our client, Hayden Homes, please accept this request for a preliminary plat and annexation and zoning for Arrowood Heights Subdivision; the proposed development is located on the west side of Ten Mile Road in Kuna, Idaho. The property is located immediately to the south of Memory Ranch Subdivision. The proposed development includes a total of 177 residential lots on 41.3 acres with a density of 4.29 dwelling units per acre. The property is currently located in Ada County and R-6 and R-8 zoning is requested for the property's zoning designation. C-1 zoning is being requested for a 9.79 acre property that is located adjacent to Ten Mile; the commercial property will be annexed into the City of Kuna for future development but the property is not included in the preliminary plat. The Comprehensive Plan designation for the property is Mixed-Use.

Preliminary Plat

The design of the project is intended to provide an upscale single-family residential subdivision for Kuna residents. The 41.30 acre property will be divided into 207 residential lots, 25 common lots, and 4 shared driveway lots. Three phases are proposed for the subdivision. The property is currently zoned RUT and located in Ada County. The average lot size in the subdivision is 5,508 square feet in size. The southern side of the proposed subdivision borders an existing County subdivision with 1 acre lots; R-6 zoning and a large common area is proposed for the area bordering the County subdivision. 16% of the subdivision property will be dedicated to open space; 12% of the subdivision will be dedicated to usable open space including a regional pathway and park areas.

There are adequate public services available to this area to serve the subdivision; The development will be served with public sewer and water provided by the City of Kuna. Fire protection will be available through the Kuna Fire Department. Storm water will be retained on site and designed by a civil engineer in accordance with City of Kuna requirements.

Access to the development will be off of Ten Mile Road; the proposed subdivision will also be connected to a Collector street which will be constructed on the northern side of the proposed

subdivision. Internal access to residential lots will be provided through public streets; standard street sections with 50' of right-of-way and 36' of pavement are proposed.

Neighborhood Meeting and Revised layout

Our client, Hayden Homes, held two Neighborhood Meetings to discuss the proposed layout with neighbors of the proposed Arrowood Heights Subdivision. At the first Neighborhood Meeting, held of September 24th, neighbors expressed concerns about proposed homes that would have bordered an existing County subdivision located to the south of Arrowood Heights. Following the meeting, Hayden Homes revamped their layout to move an open space area to the southern edge of the subdivision; several lots were also dropped from the plat to accommodate the layout change. A second Neighborhood Meeting was held on October 21st to show neighbors the proposed layout changes. The response of the neighbors to the layout changes and revised open space location was overwhelmingly positive.

Proposed Amenities

A multi-use regional pathway will be constructed on the northern side of the Kuna Canal. Several micropath connections are proposed within the subdivision to create pedestrian connections within the subdivision and to improve access to open space areas and the regional pathway. 16% of the proposed subdivision will be dedicated to open space, park areas and a basketball court are planned for open space areas.

Annexation and Zoning

Our client is requesting R-6 and R-8 zoning designations for the proposed annexation of Arrowood Heights Subdivision, C-1 Zoning is proposed for the area bordering Ten Mile. R-8 zoning will be located adjacent to the future commercial area on Ten Mile and R-6 zoning is proposed for the western portion of the subdivision. The two varying densities are being proposed to allow for a transition between the future commercial development and the proposed residential subdivision. The proposed residential and commercial zoning designations are compatible with the City of Kuna's Mixed Use Comprehensive Plan designation for the area.

The development has been designed in accordance with the City of Kuna's Code and Comprehensive Plan. Please contact me at 376-7330 if you have any questions regarding this application.

Sincerely,

J-U-B ENGINEERS, Inc.

Wendy Shrief, AICP

www.jub.com J-U-B ENGINEERS, Inc.

Wendy Shrief

From:

Sub Name Mail <subnamemail@adacounty.id.gov>

Sent:

Monday, October 26, 2020 7:30 AM

To: Cc: Wendy Shrief Rob Kazarinoff

Subject:

RE: Arrowwood Heights Subdivision Name Reservation

[External Email]

October 26, 2020

Rob Kazarinoff, J-U-B Engineers Wendy Shrief, J-U-B Engineers

RE: Subdivision Name Reservation: ARROWWOOD HEIGHTS SUBDIVISION

At your request, I will reserve the name **Arrowwood Heights Subdivision** for your project. I can honor this reservation only as long as your project is in the approval process. Final approval can only take place when the final plat is recorded.

This reservation is available for the project as long as it is in the approval process unless the project is terminated by the client, the jurisdiction or the conditions of approval have not been met, in which case the name can be re-used by someone else.

Sincerely,

Glen Smallwood Surveying Technician Ada County Development Services 200 W. Front St., Boise, ID 83702 (208) 287-7926 office (208) 287-7909 fax

From: Wendy Shrief <wshrief@jub.com> Sent: Friday, October 23, 2020 1:04 PM

To: Sub Name Mail <subnamemail@adacounty.id.gov>

Subject: [EXTERNAL] Re: Arrowwood Heights - Subdivision Name Reservation

Rob Kazarinoff is the PLS

Wendy Shrief 208.559.1760

On Oct 23, 2020, at 1:00 PM, Sub Name Mail < subnamemail@adacounty.id.gov > wrote:

2014-056657 07/17/2014 08:35 AM AMOUNT:\$19.00

OUITCLAIM DEED

FOR VALUE RECEIVED, **Dean S. Leavitt and Ann B. Leavitt**, husband and wife (collectively, the "Grantor"), hereby remise, release and forever quitclaim unto **Dean S. Leavitt and Ann B. Leavitt**, husband and wife (collectively, the "Grantee"), whose address is 7445 South Ten Mile Road, Meridian, Idaho 83642, as community property with rights of survivorship, all of their right, title and interest in and to the real property located at 7445 South Ten Mile Road, Meridian, Idaho 83642, which real property is more particularly described as follows:

The North ½ of the Southeast ¼ of Section 3, Township 2 North, Range 1 West, Boise Meridian, Ada County, Idaho,

EXCEPTING THEREFROM THE FOLLOWING:

A part of the North ½ of the Southeast ¼ of Section 3, Township 2 North, Range 1 West, Boise Meridian, Ada County, Idaho, more particularly described to wit:

Commencing at the Northeast corner of the said North ½ of the Southeast ¼;

thence South 0° 00' 00" West 1331.69 feet, along the East line of the said North ½ of the Southeast ¼, to the Southeast corner of the said North ½ of the Southeast ¼;

thence North 89° 40' 49" West 360.00 feet, along the South line of the said North ½ of the Southeast ¼, to the INITIAL POINT of this description;

thence continue North 89° 40' 49" West 2294.70 feet, along the said South line to the Southwest corner of the said North ½ of the Southeast ¼;

thence North 0° 07' 59" East 991.90 feet, along the West line of the said North ½ of the Southeast ¼, to a point on the centerline of a canal;

thence meandering along said centerline South 57° 54' 06" East 961.16 feet;

thence South 83° 45' 33" East 1083.05 feet;

QUITCLAIM DEED - Page 1 of 4

thence South 84° 55' 31" East 273.08 feet;

thence South 73° 44' 33" East 470.58 feet;

thence South 61° 24' 27" East 42.96 feet, to a point on the said East line;

thence leaving said centerline South 0° 00' 00" West 80.79 feet, along the said East line;

thence North 89° 40' 49" West 360.00 feet, parallel with the said South line;

thence South 0° 00' 00" West 121.00 feet, parallel with the said East line, to the INITIAL POINT of this description.

This tract contains 28.883 acres, more or less, and is subject to a 25.00 foot road right of way along the said East line and a right of way for a canal on the Northerly side and to all other existing rights of way and easements.

A part of the Northeast ¼ of the Southeast ¼ of Section 3, Township 2 North, Range 1 West of the Boise Meridian in Ada County, Idaho, more particularly described to wit:

Commencing at the Northeast corner of the said Northeast ¼ of the Southeast ¼;

thence South 0° 00' 00" West 1210.69 feet, along the East line of the said Northeast ¼ of the Southeast ¼, to the INTIAL POINT of this description;

thence continue South 0° 00' 00" West 121.00 feet, to the Southeast corner of the said Northeast ¼ of the Southeast ¼;

thence North 89° 40' 49" West 360.00 feet, along the South line of the said Northeast ¼ of the Southeast ¼;

thence North 0° 00' 00" East 121.00 feet, parallel with the said East line;

thence South 89° 40' 49" East 360.00 feet, parallel with the said South line to the INTIAL POINT of this description;

This tract contains 1.00 acre, more or less, and is subject to a road right of way on the East 25.00 feet and to all other existing rights of way and easements.

TO HAVE AND TO HOLD the said premises, with all rights and appurtenances, as community property with rights of survivorship, unto the said Grantee, their heirs and assigns forever.

DATED this 15th day of July, 2014.

Grantor:

Dean S. Leavitt

Ann B Leavitt

STATE OF IDAHO)
) ss.
County of Canyon)

On this 15th day of July, 2014, before me, the undersigned, a Notary Public in and for said County and State, personally appeared Dean S. Leavitt and Ann B. Leavitt, husband and wife, known or identified to be the persons whose names are subscribed to the within instrument, and acknowledged to me that they executed the same.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal on the day and year in this certificate first above written.

WETCA AND THE PUBLIC OF THE PU

NOTARY PUBLIC FOR IDAHO

Residing at: Nampa, Idaho My commission expires: 3/28/20

City of Kuna AFFIDAVIT OF LEGAL INTEREST

City of Kuna P.O. Box 13 Kuna, Idaho 83634 Phone: (208) 922-5274 Fax: (208) 922-5989

Web: www.Kunacity.id.gov

,	Dean S. Leavitt		7445 S. Ten Mile	
Name	е		1	Address
	eridian		,ID,	83642
City			State	Zip Code
being	g first duly sworn	upon oath, depose and say:		
(If A	pplicant is also	Owner of Record, skip to B)		
A.	That I am the	record owner of the property of		
	permission to	Tim Mokwa for Hayden Homes Idaho Ll	LC Merid	N Main St., Suite 109 ian ID 83642
	p =	Name	morra	Address
	to submit the	accompanying application per	taining to that propert	y.
B.	claim or liabil	emnify, defend and hold City of ity resulting from any dispute a p of the property which is the s	as to the statements	contained herein or as to
C.		t permission to the City of Kuna tions related to processing said		bject property for the purp
Date	d this	day of	Octob	202
	£	eon Lean	ith	
			Signature	
Subs	scribed and swo	orn to before me the day and y	ear first above writter	1.
		Chilin Se	du	
O-Arab	and the about the about the se	Notary Public for Idaho		
	E BARDIN - State of Idaho		St Stoort S	Dames ID
Public ssion Nu	E BARDIN - State of Idaho Imber 20181680 Expires Sep 4, 2024	Residing at: 112 1 My commission expires:	st Street S	Nampa ID

From: noreply@civicplus.com
To: Jessica Reid; Doug Hanson

Subject: Online Form Submittal: Preliminary Plat

Date: Friday, November 13, 2020 3:18:59 PM

Preliminary Plat

Step 1

Please complete each section of application in full NOTE: Engineering fees shall be paid by the applicant if required.

Contact/Applicant Information Leavitt, Dean Owner(s) of Record NA Phone: NA Email: 7445 S. Ten Mile Road Address1 Field not completed. Address2 Meridian City ID State 83642 Zip Tim Mokwa Applicant (Developer): Hayden Homes Applicant (Developer) Company: 208.869.9785 Phone: Field not completed. Email: 1406 N. Main Street, Ste 109 Address1 Field not completed. Address2 Meridian City ID State 83642 Zip Shrief, Wendy Engineer/Representative:

Engineer/Representative Company:	JUB Engineers
Phone:	2083767330
Email:	wshrief@jub.com
Address1	2760 W. Excursion Ln. Suite 400
Address2	Field not completed.
City	Meridian
State	ID
Zip	83642
	(Section Break)
Subject Property Information	
Site Address:	7445 S. Ten Mile Road
Nearest Cross Streets:	W. Columbia Rd
Parcel Number(s):	S1303417354
Section, Township, Range:	2N 1W Section 3
Property Size:	41.3
Current Land Use:	Residential / Ag
Current Zoning District:	RUT
Proposed Land Use:	Single family residential
Proposed Zoning District	R6 / R8
	(Section Break)
Project Description	
Project/Subdivision Name:	Arrowood Heights Subdivision
General description of proposed project/request:	177 lot residential subdivision

Type of Use Proposed - Check all that apply:	Residential
If Other has been selected, please provide a description:	Field not completed.
Amenities provided with this development:	Landscaping, multi-use pathway, basketball court, active open space
	(Section Break)
Residential Project Summar	y (if applicable):
Are there existing buildings?	No
Please describe existing buildings:	Field not completed.
Any existing buildings to remain?	No
Number of Residential Units:	177
Number of buildable lots:	177
Number of common lots and/or other lots:	Corrected to 26 Common Lots 01.29.2021
Type of dwellings proposed - Check all that apply:	Single-Family
Minimum square footage of structures:	1,200 sf
Gross Density (DU/Acre - Total Property):	4.29 DU / ac
Net Density (DU/Acre - Excluding Roads):	7.93 DU / ac
% of Open Space provided:	Corrected to 16% Open Space with 12% Usable Open Space 01.29.2021
Acreage of Open Space:	6.86
Type of Open Space	Landscaping, multi-use pathway, basketball court, active open

provided?	space
	(Section Break)
Non-Residential Project Sum	nmary (if applicable):
Number of building lots:	Field not completed.
Other lots:	Field not completed.
Gross floor area square footage:	Field not completed.
Existing:	Field not completed.
Hours of Operation:	Field not completed.
Building Height:	Field not completed.
Total Number of Employees:	Field not completed.
Max. Number of Employees at one time?	Field not completed.
Number & ages of students/children:	Field not completed.
Seating Capacity:	Field not completed.
Existing fencing? Type? Will it remain?	Field not completed.
Fencing type, size & location?	Field not completed.
Handicapped parking spaces:	Field not completed.
Total parking spaces:	Field not completed.
Width of driveway aisle:	Field not completed.
Proposed lighting:	Streetlights will meet Kuna design standards
Proposed landscaping:	Field not completed.
	(Section Break)

application will not be signed in the sense of a traditional paper document, 2) By signing in this alternate manner, you authorize your electronic signature to be valid and binding upon you to the same force and effect as a handwritten signature, and 3) You may still be required to provide a traditional signature at a later date.

First Name	Wendy
Last Name	Shrief
Electronic Signature Agreement	I Agree

Step 2

NOTE: A file MUST be provided for each item marked with a red asterisk (*) in order to be able to submit this application.

Once the application is deemed complete, staff will notify the applicant of the scheduled hearing date, fees due, additional copies needed, etc.

Vicinity Map	10-20-098 2 MILE VICINITY.pdf
Maintenance Agreement	Arrowood Subdivision Preliminary Plat Landscape Plan 11-2-20.pdf
Legal Description	20098 ANNEX Legal Desc.pdf
Proof of Ownership	Affidavit.pdf
Letter of Intent	Narrative.pdf
Commitment of Property Posting	Posting.pdf
Traffic Impact Study	TenMile TIS 03NOV20 FINAL.pdf
TIS Dropbox Link	Field not completed.
Subdivision Name Reservation	Subnameapproval.pdf
Phasing Plan	ARROWOOD PRE-PLAT.pdf
Landscape Plan	Arrowood Subdivision Preliminary Plat Landscape Plan 11-2-20_1.pdf
Neighborhood Meeting Certification	MtgCert.pdf
8.5" x 11" Proposed Preliminary Plat	ARROWOOD PRE-PLAT 2.pdf

24" x 36" Preliminary Plat ARROWOOD PRE-PLAT 3.pdf Drawing

(Section Break)		
Reference		
Affidavit of Legal Interest	Click here	
Commitment to Property Posting	Click here	

Email not displaying correctly? View it in your browser.

LEAVITT ANNEXATION ANNEXATION TO THE CITY OF KUNA LEGAL DESCRIPTION

That portion of the North Half of the Southeast Quarter of Section 3, Township 2 North, Range 1 West, Boise Meridian, Ada County, Idaho, more particularly described as follows:

BEGINNING at the east quarter corner of Section 3, Township 2 North, Range 1 West, Boise Meridian, from which the southeast corner of said Section 3 bears South 00°06′19″ East, 2,663.38 feet;

Thence S00°06'19"E, 1,129.97 feet along the east line of the North Half of the Southeast Quarter of said Section 3 to the centerline of the Kuna Canal according to the official plat of Ironhorse Subdivision filed in Book 91 of Plats at Pages 10651 through 10655, Ada County Records;

Thence departing from said east line and along said centerline the following five (5) courses:

- 1) N 61°31'27" W, 43.03 feet;
- 2) N 73°51'33" W, 470.58 feet;
- 3) N 85°02'31" W, 273.08 feet;
- 4) N 83°52'33" W, 1,083.05 feet;
- 5) N 58°01'06" W, 961.12 feet to the west line of said North Half of the Southeast Quarter;

Thence N 00°00'55" E, 335.16 feet departing from said centerline and along said west line to the northwest corner of said North Half of the Southeast Quarter (center-quarter of said Section 3); Thence S 89°53'52" E, 2,651.86 feet along the north line of said North Half of the Southeast Quarter to the **POINT OF BEGINNING**, containing 51.09 acres, more or less.

END DESCRIPTION

This description was prepared by me or under my supervision. If any portion of this description is modified or removed without the written consent of Robert L. Kazarinoff, PLS, all professional liability associated with this document is hereby declared null and void.

Robert L. Kazarinoff, PLS 16642	
Date	

23 SEPT 2020

LEAVITT REZONE 33.71 ACRE PARCEL ZONING TO R-6 LEGAL DESCRIPTION

That portion of the North Half of the Southeast Quarter of Section 3, Township 2 North, Range 1 West, Boise Meridian, Ada County, Idaho, more particularly described as follows:

BEGINNING at the east quarter corner of Section 3, Township 2 North, Range 1 West, Boise Meridian, from which the southeast corner of said Section 3 bears South 00°06′19″ East, 2,663.38 feet;

Thence S00°06'19"E, 80.00 feet along the east line of the North Half of the Southeast Quarter of said Section 3;

Thence N 89°53'52" W, 678.09 feet departing from said east line;

Thence S 00°06'17" W, 129.95 feet;

Thence N 89°53'43" W, 124.50 feet;

Thence S 00°06'17" W, 274.97 feet to the beginning of a curve;

Thence along said curve to the right an arc length of 31.51 feet, having a radius of 300.00 feet, a central angle of 06°01'06", a chord bearing of S 03°06'50" W and a chord length of 31.50 feet;

Thence S 06°07'23" W, 259.47 feet;

Thence N 83°52'37" W, 51.40 feet;

Thence S 06°07'23" W, 173.31 feet to the centerline of the Kuna Canal according to the official plat of Ironhorse Subdivision filed in Book 91 of Plats at Pages 10651 through 10655, Ada County Records;

Thence N 83°52'33" W, 939.91 feet along said centerline;

Thence N 58°01'06" W, 961.12 feet along said centerline to the west line of said North Half of the Southeast Quarter;

Thence N 00°00'55" E, 335.16 feet departing from said centerline and along said west line to the northwest corner of said North Half of the Southeast Quarter (center-quarter of said Section 3);

Thence S 89°53'52" E, 2,651.86 feet along the north line of said North Half of the Southeast Quarter to the **POINT OF BEGINNING**, containing 33.71 acres, more or less.

END DESCRIPTION

This description was prepared by me or under my supervision. If any portion of this description is modified or removed without the written consent of Robert L. Kazarinoff, PLS, all professional liability associated with this document is hereby declared null and void.

Robert L. Kazarinoff, PLS 16642	
Date	

27 OCT 2020

LEAVITT REZONE 7.59 ACRE PARCEL ZONING TO R-8 LEGAL DESCRIPTION

That portion of the North Half of the Southeast Quarter of Section 3, Township 2 North, Range 1 West, Boise Meridian, Ada County, Idaho, more particularly described as follows:

COMMENCING at the east quarter corner of Section 3, Township 2 North, Range 1 West, Boise Meridian, from which the southeast corner of said Section 3 bears South 00°06′19″ East, 2,663.38 feet; Thence S00°06′19″E, 80.00 feet along the east line of the North Half of the Southeast Quarter of said Section 3; Thence N 89°53′52″ W, 427.59 feet along a line parallel with and 80.00 feet southerly of the north line of said North Half of the Southeast Quarter to the **POINT OF BEGINNING**;

Thence S 00°06'17" W, 755.66 feet;

Thence N 85°02'35" W, 40.14 feet;

Thence S 00°06'17" W, 152.62 feet to the centerline of the Kuna Canal according to the official plat of Ironhorse Subdivision filed in Book 91 of Plats at Pages 10651 through 10655, Ada County Records;

Thence N 73°51'33" W, 19.45 feet along said centerline;

Thence N 85°02'31" W, 273.08 feet along said centerline;

Thence N 83°52'33" W, 143.14 feet along said centerline;

Thence N 06°07'23" E, 173.31 feet departing from said centerline;

Thence S 83°52'37" E, 51.40 feet;

Thence N 06°07'23" E, 259.47 feet to the beginning of a curve;

Thence along said curve to the left an arc length of 31.51 feet, having a radius of 300.00 feet, a central angle of 06°01'06", a chord bearing of N 03°06'50" E and a chord length of 31.50 feet;

Thence N 00°06'17" E, 274.97 feet;

Thence S 89°53'43" E, 124.50 feet;

Thence N 00°06'17" E, 129.95 feet to a line parallel with and 80.00 feet southerly of the north line of said North Half of the Southeast Quarter;

Thence S 89°53'52" E, 250.50 feet along said parallel line to the **POINT OF BEGINNING**, containing 7.59 acres, more or less.

END DESCRIPTION

This description was prepared by me or under my supervision. If any portion of this description is modified or removed without the written consent of Robert L. Kazarinoff, PLS, all professional liability associated with this document is hereby declared null and void.

Robert L. Kazarinoff, PLS 16642

27 OCT 2020

LEAVITT REZONE 9.79 ACRE PARCEL ZONING TO C-1 LEGAL DESCRIPTION

That portion of the North Half of the Southeast Quarter of Section 3, Township 2 North, Range 1 West, Boise Meridian, Ada County, Idaho, more particularly described as follows:

COMMENCING at the east quarter corner of Section 3, Township 2 North, Range 1 West, Boise Meridian, from which the southeast corner of said Section 3 bears South 00°06′19″ East, 2,663.38 feet; Thence S00°06′19″E, 80.00 feet along the east line of the North Half of the Southeast Quarter of said Section 3 to the **POINT OF BEGINNING**;

Thence continuing S 00°06'19" E, 1,049.97 feet along said east line to the centerline of the Kuna Canal according to the official plat of Ironhorse Subdivision filed in Book 91 of Plats at Pages 10651 through 10655, Ada County Records;

Thence N 61°31'27" W, 43.03 feet along said centerline;

Thence N 73°51'33" W, 451.13 feet along said centerline;

Thence N 00°06'17" E, 152.62 feet departing from said centerline;

Thence S 85°02'35" E, 40.14 feet;

Thence N 00°06'17" E, 755.66 feet to a line parallel with and 80.00 feet southerly of the north line of said North Half of the Southeast Quarter;

Thence S 89°53'52" E, 427.59 feet along said parallel line to the **POINT OF BEGINNING**, containing or 9.79 acres, more or less.

END DESCRIPTION

This description was prepared by me or under my supervision. If any portion of this description is modified or removed without the written consent of Robert L. Kazarinoff, PLS, all professional liability associated with this document is hereby declared null and void.

Robert L. Kazarinoff, PLS 1664	 12
 Date	

27 OCT 2020

Leavitt Property Portions Rezoned to R6, R8 & C1

SYM	COMMON NAME	BOTANICAL NAME	SIZE	SYM	COMMON NAME	BOTANICAL NAME	SIZE	RESIDENTIA 100 LINEAR
EVERGR	EEN TREES			SHRUBS	ORNAMENTAL GRASSES/PERENNIALS			
	AUSTRIAN PINE BLACK HILLS SPRUCE FAT ALBERT BLUE SPRUCE MOONGLOW JUNIPER NORWAY SPRUCE VANDERWOLFS PINE	PINUS NIGRA PICEA GLAUCA 'DENSATA' PICEA PUNGENS 'FAT ALBERT' JUNIPERUS SCOPLULORUM 'MOOGLOM' PICEA ABIES PINUS FLEXILIS 'VANDERWOLFS'	6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B		ARIZONA SUN GAILLARDIA BLACK EYED SUSAN BLUE GRAMMA GRASS BLUE MIST SPIREA BLUE OAT GRASS BLUE RUG JUNIPER PURPLE CONEFLOWER	GAILLARDIA × 'ARIZONA SUN' RUDBECKIA FULGIDA 'GOLDSTRUM' BOUTELOUA GRACILIS 'BLONDE AMBITION' CARYOPTERIS × CLANDONENSIS 'BLUE MIST' HELICTOTRICHON SEMPERVIRENS JUNIPERUS HORIZONTALIS 'WILTONI' ECHINACEA PURPUREA	I GAL I GAL I GAL 2 GAL I GAL 3 GAL	LOCATION
+	REES (CLASS III) BLOODGOOD LONDON PLANETREE SWAMP OAK STREET TREES (CLASS II)	PLATANUS × ACERIFOLIA 'BLOODGOOD' QUERCUS BICOLOR	2" CAL B&B 2" CAL B&B		RED FLOWER CARPET ROSE DARTS GOLD NINEBARK STELLA DE ORO DAYLILLY FINE LINE BUCKTHORN GRO-LOW SUMAC RED HOT POKER	ROSA 'FLOWER CARPET- NOARE' PHYSOCARPUS OPULIFOLIUS 'DART'S GOLD' HEMEROCALLIS 'STELLA D'ORO' RHAMNUS FRAGULA 'RON WILLIAMS' RHUS AROMATICA 'GRO-LOW' KNIPHOFIA UVARIA ' FLAMENCO'	GAL 2 GAL 3 GAL GAL 5 GAL 3 GAL GAL	ARMIDALE (COMMERC (I) SHADE 1 (2:I) SUBST AND ORNA
8	AUTUMN PURPLE ASH CRIMSON SPIRE OAK SKYLINE HONEYLOCUST LITTLELEAF LINDEN AMERICAN SWEETGUM TULIP TREE	FRAXINUS AMERICANA 'AUTUMN PURPLE' QUERCUS ROBUR x Q. ALBA 'CRIMSCHMIDT' PYRUS CALLERYANA 'GLEN'S FORM' GLEDITSIA TRIACANTHOS INERMIS 'SKYCOLE' TILIA CORDATA LIRODENDRON TULIPIFERA	2" CAL B&B		HUSKER RED PENSTEMON IVORY HALO DOGWOOD KARL FOERSTER REED GRASS LITTLE DEVIL NINEBARK HIDCOTE BLUE ENGLISH LAVENDER IVORY TOWER YUCCA MAIDEN GRASS	PENSTEMON DIGITALIS 'HUSKER RED' CORNUS ALBA 'BAILHALO' CALAMAGROSTIS ARUNDINACEA 'K.F.' PHYSOCARPUS OPULIFOLIUS 'DONNA MAY' LAVANDULA ANGUSTIFOLIA 'HIDCOTE BLUE' YUCCA FILAMENTOSA 'IVORY TOWER' MISCANTHUS SINENSIS 'GRACILLIMUS'	I GAL 5 GAL I GAL 3 GAL I GAL 3 GAL I GAL	TOTAL NUM
ORNAME	FLAME AMUR MAPLE CANADA RED CHOKECHERRY CRUZAN CRUSADER HAWTHORN HOTWINGS MAPLE ROYAL RAINDROPS CRABAPPLE SPRING SNOW CRABAPPLE	ACER GINNALA 'FLAME' PRUNUS VIRGINIANA 'CANADA RED' CRATAEGUS CRUS-GALLI 'CRUZAM' ACER TATARICUM 'GARANN' MALUS x 'JFS-KW5' MALUS 'SPRINGSNOW'	6-8' HT. MULTI-STEM 6-8' HT. MULTI-STEM 2" CAL B&B 6-8' HT. MULTI-STEM 2" CAL B&B 2" CAL B&B		BRAKELIGHTS RED YUCCA SUMMERWINE NINEBARK TIGER EYE SUMAC 6' VINYL	HESPERALOE PARVIFLORA 'PERPA' PHYSOCARPUS OPULIFOLIA 'SEWARD' RHUS TYPHINA 'BAILTIGER' FENCE ALONG ER PROPERTY LINES HESPERALOE ALONG 6' VINYL FENCE TOPERTY LINES	3 GAL 5 GAL 5 GAL	6' HT CHAINLINK FENC ALONG KUNA CANAL. (TYP).

LANDSCAPE CALCULATIONS

LOCATION	BUFFER WIDTH	LENGTH	REQUIRED	PROVIDED
ARMIDALE RD.	20'	2 25' / 00' =	43 TREES	47.5 TREES (37 SHADE TREES + 21 ORNAMENTAL TREES)
			64 EVERGREENS 255 SHRUBS	64 EVERGREENS 255+ SHRUBS
ARMIDALE RD. (COMMERCIAL)	20'	340' / 35' =	IO TREES	IO TREES
(I) SHADE TREE & (2:I) SUBSTITUTION AND ORNAMENTA	N FOR EVERGREEN		49 SHRUBS	49+ SHRUBS
COMMON AREA	158	3,270' / 800' =	197 TREES	199 TREES
스러워 돌보면 내가 (11.5) 16 16 16 16 16 16 16 16 16 16 16 16 16	F BUFFER TREES: F COMMON AREA TR	REES:	3I4 TREES	132 TREES 199 TREES

ARROWODD SUBDIVISION

SEWER LINE B

SEWER LINE C

SEWER LINE E SEWER LINE D

SEWER LINE F

SEWER LINE G

J-U-B ENGINEERS, INC.

J-U-B ENGINEERS, IN 2760 W. Excursion Ln Suite 400 Meridian, ID 83642

OTH SHA ANY SOL	REUSE OF DRAWINGS J-U-B SHALL RETAIN ALL COMMON LAW, STATUTORY, COPYRIGHT AND OTHER RESERVED RIGHTS OF THESE DRAWINGS, AND THE SAME SHALL NOT BE REUSED WITHOUT J-U-B'S PRIOR WRITTEN CONSENT. ANY REUSE WITHOUT WRITTEN CONSENT BY J-U-B WILL BE AT CLIENT'S SOLE RISK AND WITHOUT LIABILITY OR LEGAL EXPOSURE TO J-U-B.	OPYRIG THE SA EN CON L BE AT	SHT AND ME ISENT. CLIENT'S -U-B.	
	REVISION			
2		200	L	

AHO

 \square HEIGHTS COUNTY, ARROWOOD I 0 CIT

FILE: 10-20-098 PREPLAT JUB PROJ. #: 10-20-098 DRAWN BY: ---DESIGN BY: ----

CHECKED BY: ----ONE INCH AT FULL SIZE, IF NOT ONE INCH, SCALE ACCORDINGLY LAST UPDATED: 1/15/2021

SHEET NUMBER:

PP-07

Operate, maintain, and otherwise manage, or provide for the operation, maintenance, and management of, the Common Area and Landscape Easement areas (as defined in Article 3), including the repair and replacement of property damaged or destroyed by casualty loss.

5621

Operation and Maintenance of the Common Area.

Specifically, the Association shall, at Declarant's sole discretion, operate and maintain all properties owned by Declarant which are designated by Declarant for temporary or permanent use by Members of the Association, Such properties may include those lands intended for open space uses and which may be referred to as "non-buildable" lots per the Plat. Additionally, the Association may, in its discretion, limit or restrict the use of the Common Area to the Owners residing in the Subdivision.

	ANI MALEIIE							LANDS	JAPE (JALCU	LATIONS	
SYM	COMMON NAME	BOTANICAL NAME	SIZE	SYM	COMMON NAME	BOTANICAL NAME	SIZE				O BE PLANTED WITH THE VERGREEN TREES, AND	FOLLOWING PLANTS PER TWELVE (12) SHRUBS.
EVERGE	EEN TREES			SHRUBS/	ORNAMENTAL GRASSES/PERENNIALS					•	·	
	AUSTRIAN PINE BLACK HILLS SPRUCE FAT ALBERT BLUE SPRUCE MOONGLOW JUNIPER NORWAY SPRUCE VANDERWOLFS PINE	PINUS NIGRA PICEA GLAUCA 'DENSATA' PICEA PUNGENS 'FAT ALBERT' JUNIPERUS SCOPLULORUM 'MOOGLOW' PICEA ABIES PINUS FLEXILIS 'VANDERWOLFS'	6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B		ARIZONA SUN GAILLARDIA BLACK EYED SUSAN BLUE GRAMMA GRASS BLUE MIST SPIREA BLUE OAT GRASS BLUE RUG JUNIPER	GAILLARDIA × 'ARIZONA SUN' RUDBECKIA FULGIDA 'GOLDSTRUM' BOUTELOUA GRACILIS 'BLONDE AMBITION CARYOPTERIS × CLANDONENSIS 'BLUE MIS HELICTOTRICHON SEMPERVIRENS JUNIPERUS HORIZONTALIS 'WILTONI'	5T' 2 GAL I GAL 3 GAL	LOCATION ARMIDALE RD.	BUFFER WIDTH 20'	LENGTH 2 25' / 00' =	REQUIRED 43 TREES 64 EVERGREENS 255 SHRUBS	PROVIDED 47.5 TREES (37 SHADE TREES + 21 ORNAMENTAL TREES) 64 EVERGREENS 255+ SHRUBS
SHADE +	BLOODGOOD LONDON PLANETREE SWAMP OAK	PLATANUS × ACERIFOLIA 'BLOODGOOD' QUERCUS BICOLOR	2" CAL B&B 2" CAL B&B		PURPLE CONEFLOWER RED FLOWER CARPET ROSE DARTS GOLD NINEBARK STELLA DE ORO DAYLILLY FINE LINE BUCKTHORN GRO-LOW SUMAC	ECHINACEA PURPUREA ROSA 'FLOWER CARPET- NOARE' PHYSOCARPUS OPULIFOLIUS 'DART'S GOL' HEMEROCALLIS 'STELLA D'ORO' RHAMNUS FRAGULA 'RON WILLIAMS' RHUS AROMATICA 'GRO-LOW'	I GAL 5 GAL 3 GAL	ARMIDALE RD. (COMMERCIAL) (I) SHADE TREE & (5) (2:1) SUBSTITUTION F	OR EVERGREEN	340' / 35' =	IO TREES 49 SHRUBS	IO TREES 49+ SHRUBS
SHADE/	AUTUMN PURPLE ASH CRIMSON SPIRE OAK	FRAXINUS AMERICANA 'AUTUMN PURPLE' QUERCUS ROBUR × Q. ALBA 'CRIMSCHMIDT' PYRUS CALLERYANA 'GLEN'S FORM'	2" CAL B&B 2" CAL B&B		RED HOT POKER HUSKER RED PENSTEMON IVORY HALO DOGWOOD KARL FOERSTER REED GRASS	KNIPHOFIA UVARIA ' FLAMENCO' PENSTEMON DIGITALIS 'HUSKER RED' CORNUS ALBA 'BAILHALO' CALAMAGROSTIS ARUNDINACEA 'K.F.'	I GAL I GAL 5 GAL I GAL	COMMON AREA		2,270' / 800' =	197 TREES	199 TREES
	SKYLINE HONEYLOCUST LITTLELEAF LINDEN AMERICAN SWEETGUM TULIP TREE	GLEDITSIA TRIACANTHOS INERMIS 'SKYCOLE' TILIA CORDATA LIRODENDRON TULIPIFERA	2" CAL B&B 2" CAL B&B 2" CAL B&B 2" CAL B&B		LITTLE DEVIL NINEBARK HIDCOTE BLUE ENGLISH LAVENDER IVORY TOWER YUCCA MAIDEN GRASS	PHYSOCARPUS OPULIFOLIUS 'DONNA MAY LAVANDULA ANGUSTIFOLIA 'HIDCOTE BLU YUCCA FILAMENTOSA 'IVORY TOWER' MISCANTHUS SINENSIS 'GRACILLIMUS'		TOTAL NUMBER OF TOTAL NUMBER OF		ZEES:	314 TREES	I32 TREES I99 TREES
ORNAM	NTAL TREES (CLASS I)				BRAKELIGHTS RED YUCCA SUMMERWINE NINEBARK	HESPERALOE PARVIFLORA 'PERPA' PHYSOCARPUS OPULIFOLIA 'SEWARD'	3 GAL 5 GAL	TOTAL NUMBER OF	TREES			33I TREES
	FLAME AMUR MAPLE CANADA RED CHOKECHERRY CRUZAN CRUSADER HAWTHORN HOTWINGS MAPLE ROYAL RAINDROPS CRABAPPLE SPRING SNOW CRABAPPLE	ACER GINNALA 'FLAME' PRUNUS VIRGINIANA 'CANADA RED' CRATAEGUS CRUS-GALLI 'CRUZAM' ACER TATARICUM 'GARANN' MALUS x 'JFS-KW5' MALUS 'SPRINGSNOW'	6-8' HT. MULTI-STEM 6-8' HT. MULTI-STEM 2" CAL B&B 6-8' HT. MULTI-STEM 2" CAL B&B 2" CAL B&B		TIGER EYE SUMAC 6' VINYL	RHUS TYPHINA 'BAILTIGER' FENCE ALONG FR PROPERTY LINES XXXX LATTIC	5 GAL 'L FENCE W/	6' HT CHAINLINK FENCE ALONG KUNA CANAL. (TYP).				

ARROWODD SUBDIVISION

SPRING SNOW CRABAPPLE

Issue
Description
Date
ISSUE
BASE REV.

II-2-20
I-15-21

Site Planning Landscape Architecture

1509 Tyrell Lane, Ste 130 Boise, Idaho 83706 Ph. (208) 343—7175

www.jensenbelts.com

A, ID
LANDSCAPE PLAN

o Number 2076

ELIMIN,

Job Number 2076

Drawn Checked
JJN KCS

Scale AS SHOWN

Sheet Title

LANDSCAPE PLAN

Sheet Number

KEY MAP

SCALE I" = 50'

L12 of 4 Sheets

SCALE I" = 50'

BASE REV.

Description

Date

1-15-21

ASSOCIATES

Site Planning Landscape Architecture

1509 Tyrell Lane, Ste 130 Boise, Idaho 83706 Ph. (208) 343-7175

www.jensenbelts.com

PRELIMIN

Job Number 2076

Checked KCS Scale AS SHOWN Sheet Title

> LANDSCAPE **PLAN**

Sheet Number

3 of 4 Sheets

_ANTER CUT BED EDGE

NOTE: DIG HOLE TWICE THE SIZE OF ROOTBALL.

SHRUB PLANTING

NOT TO SCALE

NOT TO SCALE

I. REMOVE ALL TWINE, ROPE, OR BINDINGS FROM ALL TRUNKS.

2. REMOVE BURLAP AND WIRE BASKETS FROM THE TOP 1/3 OF ALL ROOT BALLS AFTER PLANTING. IF SYNTHETIC WRAP/BURLAP IS USED, IT MUST BE COMPLETELY REMOVED. 3. STAKING OF TREES TO BE THE CONTRACTOR'S OPTION; HOWEVER, THE CONTRACTOR IS RESPONSIBLE TO INSURE THAT ALL TREES ARE PLANTED STRAIGHT AND REMAIN STRAIGHT FOR A MIN OF I YEAR. ALL STAKING SHALL BE REMOVED AT THE END OF THE I YEAR WARRANTY PERIOD.

4. TREES PLANTED IN TURF AREAS: REMOVE TURF 3' DIA, FROM TREE TRUNK.

FREE PLANTING/STAKING NOT TO SCALE

I. FENCE TO STEP DOWN TO 3' HEIGHT 20' FROM ROW. 2. VINYL FENCE STYLE MAY VARY SLIGHTLY. 3. SAND COLOR

VINYL PRIVACY FENCE

NOT TO SCALE

I. FENCE TO STEP DOWN TO 3' HEIGHT 20' FROM ROW. 2. VINYL LATTICE FENCE STYLE MAY VARY SLIGHTLY. 3. SAND COLOR

VINYL LATTICE TOP FENCE

NOT TO SCALE

6' CHAIN LINK FENCE

NOT TO SCALE

PET WASTE STATION

NOT TO SCALE

LANDSCAPE CALCULATIONS

RESIDENTIAL LANDSCAPE BUFFERS ARE REQUIRED TO BE PLANTED WITH THE FOLLOWING PLANTS PER 100 LINEAR FEET: TWO (2) SHADE TREES, THREE (3) EVERGREEN TREES, AND TWELVE (12) SHRUBS.						
LOCATION	BUFFER WIDTH	LENGTH	REQUIRED	PROVIDED		
ARMIDALE RD.	20'	2 25' / 00' =	43 TREES	47.5 TREES (37 SHADE TREES + 21 ORNAMENTAL TREES)		
			64 EVERGREENS 255 SHRUBS	64 EVERGREENS 255+ SHRUBS		
ARMIDALE RD. (COMMERCIAL)	20'	340' / 35' =	IO TREES	IO TREES		
(I) SHADE TREE & (2:I) SUBSTITUTION AND ORNAMENTA	N FOR EVERGREEN		49 SHRUBS	49+ SHRUBS		
COMMON AREA	l5a	3,270' / 800' =	197 TREES	199 TREES		
TOTAL NUMBER OF	F BUFFER TREES: F COMMON AREA TI	REES:	314 TREES	132 TREES 199 TREES		
TOTAL NUMBER O	F TREES			331 TREES		

SYM	COMMON NAME	BOTANICAL NAME	SIZE
EVERGRE	EN TREES		
	AUSTRIAN PINE BLACK HILLS SPRUCE FAT ALBERT BLUE SPRUCE MOONGLOW JUNIPER NORWAY SPRUCE VANDERWOLFS PINE	PINUS NIGRA PICEA GLAUCA 'DENSATA' PICEA PUNGENS 'FAT ALBERT' JUNIPERUS SCOPLULORUM 'MOOGLOW' PICEA ABIES PINUS FLEXILIS 'VANDERWOLFS'	6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B 6-8' HT B&B
SHADE TE	REES (CLASS III)		
+	BLOODGOOD LONDON PLANETREE SWAMP OAK	PLATANUS × ACERIFOLIA 'BLOODGOOD' QUERCUS BICOLOR	2" CAL B&B 2" CAL B&B
SHADE/S	TREET TREES (CLASS II)		
8	AUTUMN PURPLE ASH CRIMSON SPIRE OAK SKYLINE HONEYLOCUST LITTLELEAF LINDEN AMERICAN SWEETGUM TULIP TREE	FRAXINUS AMERICANA 'AUTUMN PURPLE' QUERCUS ROBUR x Q. ALBA 'CRIMSCHMIDT' PYRUS CALLERYANA 'GLEN'S FORM' GLEDITSIA TRIACANTHOS INERMIS 'SKYCOLE' TILIA CORDATA LIRODENDRON TULIPIFERA	2" CAL B&B 2" CAL B&B 2" CAL B&B 2" CAL B&B 2" CAL B&B 2" CAL B&B
ORNAMEN	NTAL TREES (CLASS I)		
	FLAME AMUR MAPLE CANADA RED CHOKECHERRY CRUZAN CRUSADER HAWTHORN HOTWINGS MAPLE ROYAL RAINDROPS CRABAPPLE SPRING SNOW CRABAPPLE	ACER GINNALA 'FLAME' PRUNUS VIRGINIANA 'CANADA RED' CRATAEGUS CRUS-GALLI 'CRUZAM' ACER TATARICUM 'GARANN' MALUS x 'JFS-KW5' MALUS 'SPRINGSNOW'	6-8' HT. MULTI-STEM 6-8' HT. MULTI-STEM 2" CAL B&B 6-8' HT. MULTI-STEM 2" CAL B&B 2" CAL B&B
SHRUBS/C	DRNAMENTAL GRASSES/PERENNIALS		
	ARIZONA SUN GAILLARDIA BLACK EYED SUSAN BLUE GRAMMA GRASS BLUE MIST SPIREA BLUE OAT GRASS	GAILLARDIA × 'ARIZONA SUN' RUDBECKIA FULGIDA 'GOLDSTRUM' BOUTELOUA GRACILIS 'BLONDE AMBITION' CARYOPTERIS × CLANDONENSIS 'BLUE MIST' HELICTOTRICHON SEMPERVIRENS	I GAL I GAL I GAL 2 GAL I GAL

RED HOT POKER HUSKER RED PENSTEMON IVORY HALO DOGWOOD CORNUS ALBA 'BAILHALO' KARL FOERSTER REED GRASS LITTLE DEVIL NINEBARK HIDCOTE BLUE ENGLISH LAVENDER IVORY TOWER YUCCA MAIDEN GRASS BRAKELIGHTS RED YUCCA SUMMERWINE NINEBARK

JUNIPERUS HORIZONTALIS 'WILTONI' 3 GAL ECHINACEA PURPUREA I GAL ROSA 'FLOWER CARPET- NOARE' 2 GAL PHYSOCARPUS OPULIFOLIUS 'DART'S GOLD' 3 GAL HEMEROCALLIS 'STELLA D'ORO' I GAL RHAMNUS FRAGULA 'RON WILLIAMS 5 GAL RHUS AROMATICA 'GRO-LOW' 3 GAL KNIPHOFIA UVARIA 'FLAMENCO' I GAL PENSTEMON DIGITALIS 'HUSKER RED' I GAL 5 GAL CALAMAGROSTIS ARUNDINACEA 'K.F. I GAL PHYSOCARPUS OPULIFOLIUS 'DONNA MAY' 3 GAL LAVANDULA ANGUSTIFOLIA 'HIDCOTE BLUE' I GAL YUCCA FILAMENTOSA 'IVORY TOWER' 3 GAL MISCANTHUS SINENSIS 'GRACILLIMUS' I GAL HESPERALOE PARVIFLORA 'PERPA' 3 GAL PHYSOCARPUS OPULIFOLIA 'SEWARD' 5 GAL RHUS TYPHINA 'BAILTIGER' 5 GAL 6' VINYL FENCE ALONG

(TYP). SEE DTL 4, THIS SHT. 6' VINYL FENCE W/ LATTICE TOP ADJACENT TO COMMON AREAS (TYP). SEE DTL 5, THIS SHT.

6' HT CHAINLINK FENCE ■──■ ALONG KUNA CANAL. (TYP). SEE DTL 6, THIS SHT

NOTES

BLUE RUG JUNIPER

PURPLE CONEFLOWER

FINE LINE BUCKTHORN

GRO-LOW SUMAC

TIGER EYE SUMAC

DARTS GOLD NINEBARK

RED FLOWER CARPET ROSE

STELLA DE ORO DAYLILLY

- I. ALL LANDSCAPE SHALL BE INSTALLED IN ACCORDANCE WITH KUNA CITY ORDINANCE REQUIREMENTS. ALL LOTS WILL COMPLY WITH KUNA CITY ORDINANCE REQUIRING ONE (I) TREE PER LOT (PROVIDED BY BUILDER AND/OR DEVELOPER).
- 2. ALL PLANTING AREAS TO BE WATERED WITH AN AUTOMATIC UNDERGROUND IRRIGATION SYSTEM.

PERIMETER PROPERTY LINES

- 3. TREES SHALL NOT BE PLANTED WITHIN THE IO-CLEAR ZONE OF ALL ACHD STORM DRAIN PIPE, STRUCTURES, OR FACILITIES. SEEPAGE BEDS MUST BE PROTECTED FROM ANY AND ALL CONTAMINATION DURING THE CONSTRUCTION AND INSTALLATION OF THE LANDSCAPE IRRIGATION SYSTEM. ALL SHRUBS PLANTED OVER OR ADJACENT TO SEEPAGE BEDS TO HAVE A ROOT BALL THAT DOES NOT EXCEED 18" IN DIAMETER. NO LAWN SOD TO BE PLACED OVER DRAINAGE SWALE SAND WINDOWS (IF PRESENT).
- 4. NO TREES SHALL IMPEDE THE 40' STREET AND DEPARTURE VISION TRIANGLES AT ALL INTERSECTIONS. NO CONIFEROUS TREES OR SHRUBS OVER 3' HIGH AT MATURITY WILL BE LOCATED WITHIN VISION TRIANGLE OR ACHD ROW. AS TREES MATURE, THE OWNER SHALL BE RESPONSIBLE FOR PRUNING TREE CANOPIES TO MEET ACHD REQUIREMENTS FOR MAINTAINING CLEAR VISIBILITY WITHIN 40' STREET AND DEPARTURE VISION TRIANGLE. TREES SHALL BE PLANTED NO CLOSER THAN 50' FROM STOP SIGNS.
- 5. LANDSCAPE AND TREES IN FRONT OF BUILDING LOTS ON INTERIOR STREETS TO BE COMPLETED DURING CONSTRUCTION OF THESE LOTS. TREE LOCATIONS MAY BE ALTERED TO ACCOMMODATE DRIVEWAYS AND UTILITIES. TREES SHALL NOT BE PLANTED WITHIN 5' OF WATER METERS OR UTILITY LINES.
- 6. PLANT LIST IS REPRESENTATIVE AND SUBJECT TO SUBSTITUTIONS OF SIMILAR SPECIES BY OWNER, SUBJECT TO CITY FORESTER'S PRE-APPROVAL. PLANTING BED DESIGN AND QUANTITIES MAY BE ALTERED DURING FINAL PLAT LANDSCAPE PLAN DESIGN. BURLAP AND WIRE BASKETS TO BE REMOVED FROM ROOT BALL AS MUCH AS POSSIBLE, AT LEAST HALFWAY DOWN THE BALL OF THE TREE. ALL NYLON ROPES TO BE COMPLETELY REMOVED FROM TREES.
- 7. THERE ARE NO EXISTING TREE ON-SITE.

DEVELOPMENT DATA

TOTAL AREA	51.09 ACRES
RESIDENTIAL LOTS	177 26 4
TOTAL LOTS	207
USABLE COMMON AREA	4.54 ACRES
EXISTING ZONINGPROPOSED ZONING	RUT R-6 & R-8

DEVELOPER

OWNER OF RECORD

DEAN LEAVITT TIM MAKWA HAYDEN HOMES, LLC 7445 S. TEN MILE RD 1406 N. MAIN ST., STE 109 MERIDIAN, ID 83642 MERIDIAN, ID 83642

KEITH MORSE, P.E. J-U-B ENGINEERS 2760 W. EXCURSION LN., STE 400

JENSEN**BELTS** CIVIL ENGINEER **ASSOCIATES** MERIDIAN, ID 83642

Description Date BASE REV. 1-15-21

JENSENBELTS ASSOCIATES

Site Planning Landscape Architecture

1509 Tyrell Lane, Ste 130 Boise, Idaho 83706 Ph. (208) 343-7175

www.jensenbelts.com

Job Number 2076

Checked Drawn KCS Scale AS SHOWN Sheet Title LANDSCAPE

PLAN

Sheet Number

4 of 4 Sheets

Traffic Impact Statement

Arrowood Subdivision Kuna, Idaho

November 3, 2020

TRAFFIC IMPACT STATEMENT ARROWOOD SUBDIVISION DEVELOPMENT KUNA, ID NOVEMBER 3, 2020

PREPARED BY:

J-U-B ENGINEERS, INC.

392 East Winchester Street, Suite 300 Salt Lake City, UT 84107

Copyright © 2014 by J-U-B ENGINEERS, Inc., Salt Lake City, Utah. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the copyright owner. The authors retain copyright of their works.

TABLE OF CONTENTS

1.	Exce	ecutive Summary	3
2.	Intro	oduction	3
	2.1	Purpose	3
	2.2	Proposed Development and Access	3
	2.3	Study Area and Methodology	4
3.	Anal	lysis of existing conditions	5
	3.1	Existing Roadway Conditions and Intersection Controls	5
	3.2	Data Collection	6
	3.3	Existing Traffic Operations and Level of Service	6
	3.4	Access Geometrics	8
4.	Anal	lysis of background traffic Conditions	7
	4.1	COMPASS Growth Rates	7
	4.2	Planned Improvements	7
	4.3	Background Traffic Operations Without Improvements	8
5.	Proj	ect traffic	9
	5.1	Trip Generation	9
	5.2	Trip Distribution and Assignment	9
	5.3	Future Traffic Operations with Project	10
	5.4	Future Traffic Operations with Project and Improvements	11
6.	Cond	clusions and Recommendations	12
7.	APP	FNDICES	13

LIST OF FIGURES

Figure 1: Approximate Site Location	4
Figure 2: Study Area	5
LIST OF TABLES	
Table 1: Intersection Level of Service Criteria	6
Table 2: Existing 2020 Intersection Level of Service Summary	6
Table 3: Existing 2020 Roadway Level of Service Summary	7
Table 4: Study Area Model Growth Rate	7
Table 5: Future Background Traffic (Year 2026) Intersection Level of Service Summary	8
Table 6: Future Background 2026 Roadway Level of Service Summary	9
Table 7: ITE Trip Generation Summary	9
Table 8: Project Trip Assignment	10
Table 9: 2026 with Project Intersection Level of Service Summary	11
Table 10: 2026 With Project Roadway Level of Service Summary	11
Table 11: Future Traffic with Project (2026) and Improvements	12

1. EXECUTIVE SUMMARY

The proposed Arrowood Subdivision (Project) site is located west of South Ten Mile Road between Lake Hazel Road and West Columbia Road near Kuna, Idaho (**Figure 1**). The Project is proposed on existing vacant land west of South Ten Mile Road. The Project consists of 181 dwelling units that will be accessed via two access points to a future collector road that will connect to South Ten Mile Road. The Project is anticipated to be built out and generating traffic by 2026.

Based upon the existing and future traffic analysis, the proposed Project results in a slight increase in delay for some traffic turning movements at the intersection of Lake Hazel Road and South Ten Mile Road under the future background conditions (2026) without project traffic. The traffic analysis for existing conditions indicates that the intersection of Lake Hazel Road and South Ten Mile Road currently operates at an acceptable level of service. However, the analysis for buildout year (2026) without Project traffic indicates that delay will increase, and the intersection will operate at an unacceptable level of service (LOS F). Based on the ACHD Five Year Work Plan, a traffic signal is anticipated to be the mitigation to improve traffic operations into the future. This intersection would operate at an overall LOS B under signalized AM and PM conditions, with or without the project in the year 2026. It is recommended that a signal be installed to improve operations.

The traffic analysis for buildout year (2026) with the project traffic indicates the South Ten Mile Road/ New East-West Collector Road intersection is anticipated to operate at an acceptable level of service. It is recommended that the project design the Project access points to meet City standards, and to design the access points and site layout to meet the sight distance standards in the AASHTO Green Book. Based on traffic analysis, the proposed access locations represent an acceptable traffic solution.

2. INTRODUCTION

2.1 Purpose

J-U-B Engineers, Inc. (J-U-B) has been contracted by Hayden Homes, LLC. to prepare a Traffic Impact Statement (TIS) for the proposed Arrowood Subdivision development located near Kuna, Idaho, and hereafter referred to as the Project. The purpose of this study is to evaluate the traffic impacts of the proposed Project and identify potential mitigation measures. This TIS was prepared to conform to the Ada County Highway District (ACHD) Traffic Impact Studies requirements in discussions ACHD staff and data from Community Planning Association of Southwest Idaho (COMPASS).

2.2 Proposed Development and Access

The Project site is located west of South Ten Mile Road between Lake Hazel Road and West Columbia Road near Kuna, Idaho (**Figure 1**). The Project is proposed on existing vacant land west of South Ten Mile Road. The Project consists of 181 dwelling units that will be accessed via two access points to a future collector road that will connect to South Ten Mile Road. The conceptual site plan is shown in **Appendix A**. The Project is anticipated to be completed by 2026. There are currently no existing land uses on the Project site, but the site is adjacent to residential land uses. The Project site parcel zoning is RR Rural Residential. The land uses west of the Project site include residential, while to the north, south and east, the area is unincorporated, and the use is a mix of agricultural, commercial, and residential.

Lake Hazel Road

S Ten Mile Road

Project Site

W Columbia Road

© 2020 Goog

Figure 1: Approximate Site Location

2.3 Study Area and Methodology

Based on coordination with Ada County Highway District (ACHD), the City of Kuna, and Community Planning Association of Southwest Idaho (COMPASS), the study area includes one existing intersection and two existing roadway segments. The study area is shown below **Figure 2.**

Intersections:

- South Ten Mile Road / Lake Hazel Road
- South Ten Mile Road / New East-West Collector Roadway

Roadway Segments:

- South Ten Mile Road from Lake Hazel Road to New Collector Road
- New East-West Collector Roadway from South Ten Mile Road to End of Project Frontage

The weekday AM and PM peak hours were determined to be the critical hours for traffic analysis purposes. Synchro models were developed for the existing 2020 AM and PM peak hours for the study intersections. Existing traffic volumes were collected on a typical weekday in February, 2020 prior to Covid-19 in the AM (7:00 - 9:00) and PM (4:00 - 6:00) peak hours. Growth rates were calculated from the information

provided by COMPASS. The forecasted 2026 horizon year conditions with and without the Project development were analyzed and mitigation measures were identified.

Figure 2: Study Area

3. ANALYSIS OF EXISTING CONDITIONS

3.1 Existing Roadway Conditions and Intersection Controls

Lake Hazel Road is classified as a principal arterial and South Ten Mile Road is a two-lane minor arterial. The posted speed limit is 50 mph on Lake Hazel Road and South Ten Mile Road.

The four-legged intersection of South Ten Mile Road / Lake Hazel Road currently operates as an all-way stop control intersection, and the lane configuration on all approaches includes a shared right/thru/left lane.

The project access points connect to a new East-West Roadway, which is anticipated to be a 2-lane collector roadway.

L2 Data Collection performed weekday AM (7:00 - 9:00) and PM (4:00 - 6:00) peak hour intersection turning movement counts on February 26, 2020. The traffic data is included in **Appendix B** and is summarized as follows.

- Intersection turning movement counts for the weekday AM and PM peak hour periods at one intersection:
 - o South Ten Mile Road / Lake Hazel Road

3.3 Existing Traffic Operations and Level of Service

Level of Service (LOS) is a qualitative description of the level of congestion ranging from LOS A to LOS F. LOS A represents free-flowing traffic and LOS F represents gridlock. LOS is defined by the average delay per vehicle and is illustrated in **Table 1**. For a two way stop controlled intersection, LOS is reported per movement rather than for the overall intersection because most of the vehicles at an unsignalized intersection are thru traffic on the main road and experience little to no delay.

Level of Service	Unsignalized Intersection (Delay per Seconds per Vehicle)	Signalized Intersection (Delay per Seconds per Vehicle)
А	≤ 10	≤ 10
В	> 10 and ≤ 15	> 10 and ≤ 20
С	> 15 and ≤ 25	> 20 and ≤ 35
D	> 25 and ≤ 35	> 35 and ≤ 55
Е	> 35 and ≤ 50	> 55 and ≤ 80
F	> 50	> 80

Table 1: Intersection Level of Service Criteria

The minimum acceptable level of service for ACHD roadways is LOS "E" for Principal Arterials and Minor Arterials and LOS "D" for Collectors. The acceptable level of service for all intersections is based on a maximum volume to capacity (v/c) ratio of 0.90.

The results of the intersection level of service analysis for the 2020 existing conditions are summarized in **Table 2.** The detailed Synchro output results for the delay and LOS are provided in **Appendix C**.

			AM Peak I	lour			PM Peak	Hour	
Intersection	Movement	Volume	Delay (sec)	v/c ratio	LOS	Volume	Delay (sec)	v/c ratio	LOS
	EBL	23				5		0.13	
Lake Hazel Road	EBT	117	12.3	0.39	В	57	9.7		Α
IRG	ERB	25				16			
aze	WBL	10				26]	0.34	
主	WBT	59	10.1	0.16	В	167	11.5		В
-ake	WBR	21				15			
	NBL	15		0.61		18	11.0	0.33	
1: oad	NBT	358	16.1		0.61 C	184			В
e ~	NBR	16				10			
≅	SBL	34				29			
en	SBT	121	10.8	0.27	В	291	13.3	0.51	В
۲ ۲	SBR	3				16			
1: South Ten Mile Road	Overall Intersection		13.5	В			11.9	В	

Table 2: Existing 2020 Intersection Level of Service Summary

As shown in **Table 2**, the v/c ratios for the study intersection movements are less than 0.90 and they meet the minimum acceptable criteria established by ACHD.

The existing 2020 AM and PM peak directional segment volumes on South Ten Mile Road were compared to the ACHD roadway segment maximum peak hour volume for a 2-lane facility with LOS E standard. The roadway levels of service are shown in **Table 3.**

Segment	From	То	AM Peak Hour Directional Volume	PM Peak Hour Directional Volume	Highest Peak Hour Directional Volume	ACHD Standard for LOS D/E	Meets LOS E (Y/N)
Ten Mile	Lake Hazel Road	New East- West Collector Road (Project)	389	333	389	575	Υ
New East- West Collector	South Ten Mile Road	End or Project Frontage	N/A	N/A	N/A	425	N/A

Table 3: Existing 2020 Roadway Level of Service Summary

As shown above, the South Ten Mile Road segment in the study area is operating at LOS E or better in the 2020 AM and PM peak hours.

4. ANALYSIS OF BACKGROUND TRAFFIC CONDITIONS

4.1 COMPASS Growth Rates

2026 has been identified as the horizon year for the purpose of this analysis. Community Planning Association of Southwest Idaho (COMPASS) provided the PM peak hour base year (2020) and future year (2025) model run outputs (**Appendix D**). The traffic analysis zone impacted by this development is TAZ 1153 in COMPASS models. The 2025 model output contains 18 existing single-family units along with the 181 units anticipated in the Project. Prior to estimating the growth rate, the model generated Project trips were deducted from the peak hour volumes. This represents the 2025 background volumes on study roadways without the Project trips. A straight-line growth rate was then estimated using the peak hour 2020 base year volumes and the 2025 background year volumes. The linear annual growth rates were estimated for each directional segment and are presented in **Table 4**.

Table 4: Study Area Model Growth Rate

4.2 Planned Improvements

The ACHD Five Year Work Plan (2021-2025) was reviewed to identify planned roadway projects in the study area. A signal and intersection widening project are included in the ACHD Five Year Work Plan at the intersection of South Ten Mile Road and Lake Hazel Road. The construction date for the project is

listed as "Future," as it is anticipated to occur after 2025. No additional planned roadway improvements are identified for South Ten Mile Road or Lake Hazel Road within the study area.

4.3 Access Geometrics

The conceptual site plan layout in **Appendix A** includes two access points onto the new East-West Collector Road that provide egress and ingress into the Project via the South Ten Mile Road/new East-West Collector Road intersection. The sight distance of the proposed access points have and the South Ten Mile Road/new East-West Collector Road intersection not been evaluated. However, as the design is finalized the access points should be designed to provide sufficient intersection sight distances to meet standards in the American Association of State Highway and Transportation Officials (AASHTO) Green Book.

4.4 Background Traffic Operations Without Improvements

The Project build out date is 2026. The COMPASS model growth trends are based upon base year 2020 and future year 2025. These growth trends were converted to linear annual growth rates as shown in **Table 4** and were then applied to 2020 traffic volumes for 6 years to derive the 2026 horizon year traffic volumes. The 2026 AM and PM peak hour background traffic volumes were estimated using the existing AM and PM peak hour volumes and applying the growth rates shown in **Table 4**.

The 2026 background volumes were analyzed with the existing intersection geometry. The results of the intersection level of service analysis for the 2026 background conditions are summarized in **Table 5** and the detailed Synchro output results for the delay and LOS are included in **Appendix C**. Most movements show a slight increase in delays compared to existing conditions. However, the northbound movement level of service is expected to degrade to LOS F in the AM peak hour condition.

			AM Peal	k Hour		PM Peak Hour				
Intersection	Movement	Volume	Delay	v/c ratio	LOS	Volume	Delay	v/c ratio	LOS	
	EBL	38				8				
Lake Hazel Road	EBT	290	31.3	0.81	D	93	13.0	0.29	В	
<u>8</u>	EBR	41				26				
laze	WBL	14				31		0.60		
Ge F	WBT	83	14.2	0.31	В	235	19.2		С	
Lak	WBR	30				21				
1: ad \	NBL	20		1.06		24	18.3			
1 Soa	NBT	485	85.8		F	249		0.58	С	
le F	NBR	22				14				
Ξ	SBL	37				31				
Геп	SBT	131	15.5	0.41	С	315	23.9	0.72	С	
1: South Ten Mile Road	SBR	3				17				
nog	Overall		51.3	F			19.8	В		
0,	Intersection		51.5	г			19.8	В		

Table 5: Future Background Traffic (Year 2026) Intersection Level of Service Summary

As shown in **Table 5**, the northbound movement delays are anticipated to exceed allowable standards in the AM peak hour. The v/c ratios for the same movement exceeds the ACHD standard of 0.90 which is considered unacceptable.

The 2026 AM and PM peak directional segment volumes on South Ten Mile Road were compared to the ACHD roadway segment maximum peak hour volume for a 2-lane facility with LOS E standard. The roadway level of service are shown in **Table 6.**

Table 6: Future Background 2026 Roadway Level of Service Summary

Segment	From	То	AM Peak Hour Directional Volume	PM Peak Hour Directional Volume	Highest Peak Hour Directional Volume	ACHD Standard for LOS D/E	Meets LOS E (Y/N)
Ten Mile	Lake Hazel Road	New East-West Collector Road (Project)	552	378	552	575	Υ
New East- West Collector	South Ten Mile Road	End or Project Frontage	N/A	N/A	N/A	425	N/A

As shown above, the South Ten Mile Road segment in the study area is expected to operate at LOS E or better in the 2026 AM and PM peak hours.

5. PROJECT TRAFFIC

5.1 Trip Generation

Trip generation for the proposed Project was estimated using data published in Institute of Transportation Engineers (ITE) <u>Trip Generation</u>, 10th Edition, 2017. Land Use Code (LUC) 210 Single Family Residential was used to estimate the trip generation for the project using the regression Equations. The daily, AM and PM peak hour trips are shown in **Table 7**.

Table 7: ITE Trip Generation Summary

Land Use	Dwelling Units	Land Use Code	Daily	AM In	AM Out	AM Total	PM In	PM Out	PM Total
Residential Single Family	181	210	1,795	33	101	134	114	67	180

5.2 Trip Distribution and Assignment

The trip distribution and assignment for the Project is based on the COMPASS traffic model distribution on Lake Hazel Road and South Ten Mile Road. The AM and PM peak hour Project trip assignment to the study intersections is shown in **Table 8.**

Table 8: Project Trip Assignment

Intersection	Movement	Project Trip % (Inbound/Outbound)	AM Peak Hour Project Trips	PM Peak Hour Project Trips
_	EBL	0%	0	0
aze	EBT	0%	0	0
Ĭ	EBR	12%	4	14
ake	WBL	28%	9	32
	WBT	0%	0	0
oad ad	WBR	0%	0	0
1: South Ten Mile Road \ Lake Hazel Road	NBL	12%	12	8
l≡	NBT	31%	32	21
en	NBR	28%	28	19
<u>۱</u> ۲	SBL	0%	0	0
out	SBT	31%	11	36
Š	SBR	0%	0	0
ır ıad	EBL	71%	72	48
Scto Ro	EBT	0%	0	0
olle	EBR	29%	29	19
st C	NBL	29%	10	33
2: New East-West Collector Road / South Ten Mile Road	NBT	0%	0	0
st-V	NBR	0%	0	0
Ea: / So	SBL	0%	0	0
ew ad /	SBT	0%	0	0
Z Š	SBR	71%	24	81

5.3 Future Traffic Operations with Project

The Project trips were combined with the 2026 background conditions to develop the future AM and PM peak hour volumes with the Project. The results of the intersection level of service analysis for the year 2026 conditions with the Project are summarized in **Table 9**. The detailed Synchro output results for the delay and LOS are included in **Appendix B**.

As shown in **Table 9**, the South Ten Mile Road / Lake Hazel Road intersection is anticipated to operate at reduced levels of services in the AM peak hour. The South Ten Mile Road and New East-West Collector Road intersection is expected to operate at acceptable levels of service.

Table 9: 2026 with Project Intersection Level of Service Summary

			AM Peal	k Hour			PM Peak	Hour	
Intersection	Movement	Volume	Delay	v/c ratio	LOS	Volume	Delay	v/c ratio	LOS
7	EBL	38				8			
oac	EBT	290	29.3	0.81	D	93	14.5	0.33	В
~	EBR	45				40			
laze	WBL	23				68			
e T	WBT	83	14.6	0.33	В	235	25.0	0.69	С
Ľ	WBR	30				21			
1: ad \	NBL	33				32			
1 oa	NBT	516	113.6	1.15	F	270	24.4	0.69	С
<u>e</u>	NBR	50				32			
≅	SBL	37	15.7			31		0.81	
ſen	SBT	142		7 0.42	С	351	33.1		D
ţ	SBR	3				17			
1: South Ten Mile Road \ Lake Hazel Road	Overall Intersection		65.0	F			26.3	D	
Ф	EBL	72				48			
/ Ten Mile	EBT	0	17.1	0.29	С	0	18.2	0.22	С
en	EBR	29				19			
<u> </u>	NBL	10				33			
2: ctor/ Road	NBT	527	0.1	0.01	Α	287	0.9	0.04	Α
lec R	NBR	0				0			
8	SBL	0				0			
2: New Collector , Road	SBT	186	0	-	Α	387	0	-	Α
Z	SBR	24		1		81			

The 2026 AM and PM peak directional segment volumes on South Ten Mile Road and the New East-West Collector Road were compared to the ACHD roadway segment maximum peak hour volume for a 2-lane facility with LOS D/E standard. The roadway levels of service are shown in **Table 10**.

Table 10: 2026 With Project Roadway Level of Service Summary

Segment	From	То	AM Peak Hour Directional Volume	PM Peak Hour Directional Volume	Highest Peak Hour Directional Volume	ACHD Standard for LOS D/E	Meets LOS E (Y/N)
Ten Mile	Lake Hazel Road	New East-West Collector Road (Project)	599	378	599	575	N
New East- West Collector	South Ten Mile Road	End or Project Frontage	101	114	114	425	Υ

As shown above, the South Ten Mile Road segment in the study area is not anticipated to operate at LOS E or better in the 2026 AM peak hour. The New Collector is expected to operate at LOS D or better in the AM and PM peak hours.

5.4 Future Traffic Operations with Project and Improvements

The South Ten Mile Road / Lake Hazel Road intersection is expected to operate at reduced levels of service under background year 2026 and future year 2026 with project conditions during the AM peak hour. According to the ACHD Five Year Work Plan, a traffic signal is anticipated to be the mitigation to improve traffic operations. This intersection is anticipated to operate at an overall LOS B under signalized AM and PM conditions, with or without the Project in the year 2026. It is recommended that a signal be installed to improve operations with or without the Project. **Table 11** shows the intersection level of service for the

South Ten Mile Road / Lake Hazel Road intersection with a proposed signal. No additional lanes or turn lanes were included with the signal analysis. The detailed Synchro output results for the delay and LOS are included in **Appendix B**.

Table 11: Future Traffic with Project (2026) with Improvements

		AM Peal	k Hour		PM Peak Hour				
Movement	Volume	Delay	v/c ratio	LOS	Volume	Delay	v/c ratio	LOS	
EBL	38				8				
EBT	290	19.2	0.69	В	93	8.6	0.25	Α	
EBR	45				40				
WBL	23		0.26		68	16.3	0.62		
WBT	83	10.3		В	235			В	
WBR	30				21				
NBL	33		0.80		32	11.3	0.51		
NBT	519	20.3		С	270			В	
NBR	50				32				
SBL	37				31				
SBT	142	9.2	0.27	Α	351	13.0	0.41	В	
SBR	3				17				
Overall		17.4	В			12.9	В		
	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR	EBL 38 EBT 290 EBR 45 WBL 23 WBT 83 WBR 30 NBL 33 NBT 519 NBR 50 SBL 37 SBT 142 SBR 3 Overall	Movement Volume Delay EBL 38 19.2 EBT 290 19.2 EBR 45 45 WBL 23 10.3 WBR 30 NBL 33 NBL 33 20.3 NBR 50 58L 37 SBL 37 9.2 SBR 3 3 Overall 17.4 17.4	Colume Delay Pratio	Movement Volume Delay v/c ratio LOS EBL 38 19.2 0.69 B EBT 290 19.2 0.69 B EBR 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 46	Movement Volume Delay v/c ratio LOS Volume EBL 38 8 8 93 8 EBT 290 19.2 0.69 B 93 40 WBL 23 40 68 235 68 235 21 21 21 21 21 21 21 21 22 21 22 22 22 22 22 20 270	Movement Volume Delay v/c ratio LOS Volume Delay EBL 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 93 8.6 8 8 8 8 93 8.6 8 93 8.6 93 8.6 9 8 93 8.6 9 93 8.6 9 93 8.6 9 9 8 93 8.6 93 8.6 9 93 8.6 9 8 93 8.6 9 93 8.6 9 8 93 8.6 9 8 93 8.6 9 8 93 8.6 9 16.3 9 9 9 9 9 9 11.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Movement Volume Delay v/c ratio LOS Volume Delay v/c ratio EBL 38 19.2 0.69 B 8 8.6 0.25 EBR 45 40<	

6. CONCLUSIONS AND RECOMMENDATIONS

Based upon the existing and future traffic analysis, the proposed Project results in a slight increase in delay for some traffic movements at the intersection of Lake Hazel Road and South Ten Mile Road under the future background conditions (2026) without project traffic. The traffic analysis for existing conditions indicates that the intersection of Lake Hazel Road and South Ten Mile Road currently operates at an acceptable level of service. However, the analysis for background year (2026) without Project traffic indicates that delay will increase, and the intersection will operate at an unacceptable level of service (LOS F). Based on the ACHD Five Year Work Plan, a traffic signal is anticipated to be the mitigation to improve traffic operations. This intersection would operate at an overall LOS B under signalized AM and PM conditions, with or without the project in the year 2026. It is recommended that a signal be installed to improve operations.

The traffic analysis for buildout year (2026) with the project traffic indicates the South Ten Mile Road/ New East-West Collector Road is anticipated to operate at an acceptable level of service. It is recommended that the project design the Project access points to meet City standards, and to design the access points and site layout to meet the sight distance standards in the AASHTO Green Book. Based on traffic analysis, the proposed access locations represent an acceptable traffic solution.

7. APPENDICES

A. SITE PLAN

ARROWOOD SUBDIVISION HAYDEN HOMES

SE 1/4, SEC. 3, T.2 N., R.1 W., B.M. CITY OF KUNA, ADA COUNTY, IDAHO

B. TURNING MOVEMENT COUNTS

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 2/26/2020

Page No : 1

Groups Printed- General Traffic

			Mile I					Hazel rom Ea	Raod	inicu- G		Ten	Mile I					Hazel rom W			
Start																					
Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	1	25	6	0	32	4	21	2	0	27	3	109	2	0	114	7	35	4	0	46	219
07:15 AM	0	33	10	0	43	6	11	3	0	20	5	105	5	0	115	6	42	9	0	57	235
07:30 AM	0	34	11	0	45	7	14	3	0	24	4	78	2	0	84	5	55	5	0	65	218
07:45 AM	2	29	7	0	38	4	13	2	0	19	4	66	6	0	76	7	45	5	0	57	190
Total	3	121	34	0	158	21	59	10	0	90	16	358	15	0	389	25	177	23	0	225	862
08:00 AM	3	27	5	0	35	7	14	1	0	22	3	77	4	0	84	4	29	6	0	39	180
08:15 AM	0	23	6	0	29	3	8	2	0	13	8	65	4	0	77	11	16	2	0	29	148
08:30 AM	2	32	5	0	39	2	6	2	0	10	4	83	6	0	93	8	19	4	0	31	173
08:45 AM	5	23	5	0	33	3	2	2	0	7	0	66	6	0	72	7	10	1	0	18	130
Total	10	105	21	0	136	15	30	7	0	52	15	291	20	0	326	30	74	13	0	117	631
	ı .					ı .					l _		_	_		l _	_		_		l
04:00 PM	4	72	6	0	82	4	26	3	0	33	2	54	5	0	61	5	7	0	0	12	188
04:15 PM	5	65	7	0	77	10	25	4	0	39	2	62	4	0	68	7	13	3	0	23	207
04:30 PM	8	74	8	0	90	1	40	1	0	42	0	46	5	0	51	8	12	2	0	22	205
04:45 PM	10	79	7	00	87	17	48	6	0	56	5	217	3 17	0	220	3	15 47	<u>0</u> 	0	18	220
Total	18	290	28	0	336	1/	139	14	0	170) 3	217	1/	0	239	23	47	5	0	75	820
05:00 PM	8	76	4	0	88	2	34	8	0	44	4	37	2	0	43	0	11	1	0	12	187
05:15 PM	4	64	10	0	78	4	37	8	0	49	2	55	5	0	62	6	17	1	0	24	213
05:30 PM	3	72	8	0	83	7	48	4	0	59	3	37	8	0	48	7	14	3	0	24	214
05:45 PM	5	77	8	0	90	3	41	3	0	47	2	42	4	0	48	5	14	1	0	20	205
Total	20	289	30	0	339	16	160	23	0	199	11	171	19	0	201	18	56	6	0	80	819
Grand Total	51	805	113	0	969	69	388	54	0	511	47	1037	71	0	1155	96	354	47	0	497	3132
Apprch %	5.3	83.1	11.7	0		13.5	75.9	10.6	0		4.1	89.8	6.1	0		19.3	71.2	9.5	0		
Total %	1.6	25.7	3.6	0	30.9	2.2	12.4	1.7	0	16.3	1.5	33.1	2.3	0	36.9	3.1	11.3	1.5	0	15.9	

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 2/26/2020

Page No : 2

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 2/26/2020

Page No : 3

			Mile I					Hazel rom Ea					Mile I					Hazel rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ai	alysis	From 0	7:00 A	M to 1	1:45 AM	- Peak	1 of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 07:00 A	M															
07:00 AM	1	25	6	Peds App. Total Right Thru Left Peds M to 11:45 AM - Peak 1 of 1 Begins at 07:00 AM 0 32 4 21 2 0	27	3	109	2	0	114	7	35	4	0	46	219					
07:15 AM	0	33	10	0	43	6	11	3	0	20	5	105	5	0	115	6	42	9	0	57	235
07:30 AM	0	34	11	0	45	7	14	3	0	24	4	78	2	0	84	5	55	5	0	65	218
07:45 AM	2	29	7	0	38	4	13	2	0	19	4	66	6	0	76	7	45	5	0	57	190
Total Volume	3	121	34	0	158	21	59	10	0	90	16	358	15	0	389	25	177	23	0	225	862
% App. Total	1.9	76.6	21.5	0		23.3	65.6	11.1	0		4.1	92	3.9	0		11.1	78.7	10.2	0		
PHF	.375	.890	.773	.000	.878	.750	.702	.833	.000	.833	.800	.821	.625	.000	.846	.893	.805	.639	.000	.865	.917

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

Ten Mile Road

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Lake Hazel Raod

Site Code : 00000000

Start Date : 2/26/2020

Page No : 4

Ten Mile Road

		F	rom No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From (07:00 A	M to 1	1:45 AM	- Peak	1 of 1														
Peak Hour for	Each A	Approa	ch Begi	ins at:																	
	07:15 AN	1				07:00 AM					07:00 AM					07:00 AM	I				
+0 mins.	0	33	10	0	43	4	21	2	0	27	3	109	2	0	114	7	35	4	0	46	
+15 mins.	0	34	11	0	45	6	11	3	0	20	5	105	5	0	115	6	42	9	0	57	
+30 mins.	2	29	7	0	38	7	14	3	0	24	4	78	2	0	84	5	55	5	0	65	
+45 mins.	3	27	5	0	35	4	13	2	0	19	4	66	6	0	76	7	45	5	0	57	
Total Volume	5	123	33	0	161	21	59	10	0	90	16	358	15	0	389	25	177	23	0	225	
% App. Total	3.1	76.4	20.5	0		23.3	65.6	11.1	0		4.1	92	3.9	0		11.1	78.7	10.2	0		
PHF	.417	.904	.750	.000	.894	.750	.702	.833	.000	.833	.800	.821	.625	.000	.846	.893	.805	.639	.000	.865	

Lake Hazel Raod

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Site Code : 00000000

Start Date : 2/26/2020

Page No : 5

			Mile I					Hazel rom Ea					Mile I					Hazel rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From 1	2:00 P	M to 05	5:45 PM	- Peak	1 of 1				•	•									
Peak Hour for	Entire	Interse	ction B	egins a	t 04:45 P	M															
04:45 PM	1	79	7	0	87	2	48	6	0	56	1	55	3	0	59	3	15	0	0	18	220
05:00 PM	8	76	4	0	88	2	34	8	0	44	4	37	2	0	43	0	11	1	0	12	187
05:15 PM	4	64	10	0	78	4	37	8	0	49	2	55	5	0	62	6	17	1	0	24	213
05:30 PM	3	72	8	0	83	7	48	4	0	59	3	37	8	0	48	7	14	3	0	24	214
Total Volume	16	291	29	0	336	15	167	26	0	208	10	184	18	0	212	16	57	5	0	78	834
% App. Total	4.8	86.6	8.6	0		7.2	80.3	12.5	0		4.7	86.8	8.5	0		20.5	73.1	6.4	0		
PHF	.500	.921	.725	.000	.955	.536	.870	.813	.000	.881	.625	.836	.563	.000	.855	.571	.838	.417	.000	.813	.948

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

Ten Mile Road

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Lake Hazel Raod

Site Code : 00000000

Start Date : 2/26/2020

Page No : 6

Ten Mile Road

		Fı	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From 1	2:00 P	M to 05	5:45 PM	- Peak	1 of 1														
Peak Hour for	Each A	Approa	ch Begi	ns at:																	_
	04:30 PM					04:45 PM					04:00 PM					05:00 PM	I				
+0 mins.	8	74	8	0	90	2	48	6	0	56	2	54	5	0	61	0	11	1	0	12	
+15 mins.	1	79	7	0	87	2	34	8	0	44	2	62	4	0	68	6	17	1	0	24	
+30 mins.	8	76	4	0	88	4	37	8	0	49	0	46	5	0	51	7	14	3	0	24	
+45 mins.	4	64	10	0	78	7	48	4	0	59	1	55	3	0	59	5	14	1	0	20	
Total Volume	21	293	29	0	343	15	167	26	0	208	5	217	17	0	239	18	56	6	0	80	
% App. Total	6.1	85.4	8.5	0		7.2	80.3	12.5	0		2.1	90.8	7.1	0		22.5	70	7.5	0		
PHF	.656	.927	.725	.000	.953	.536	.870	.813	.000	.881	.625	.875	.850	.000	.879	.643	.824	.500	.000	.833	

Lake Hazel Raod

L2DataCollection.com (208) 860-7554 Utah (801) 413-2993

Study: WHP0010

Intersection:Ten Mile Rd / Lake Hazel Rd

City, State: Ada County, Idaho

Control: All Stop

File Name: Ten Mile Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 2/26/2020

Page No : 7

Image 1

C.SYNCHRO OUTPUT

Intersection		
Intersection Delay, s/veh	13.5	
Intersection LOS	В	
TROTOGORION 200		

Movement	EBL	FBT	EBK	WBL	WBI	WBR	NBL	NRI	NBK	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	23	177	25	10	59	21	15	358	16	34	121	3
Future Vol, veh/h	23	177	25	10	59	21	15	358	16	34	121	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	192	27	11	64	23	16	389	17	37	132	3
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	12.3			10.1			16.1			10.8		
HCM LOS	В			В			С			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	10%	11%	22%	
Vol Thru, %	92%	79%	66%	77%	
Vol Right, %	4%	11%	23%	2%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	389	225	90	158	
LT Vol	15	23	10	34	
Through Vol	358	177	59	121	
RT Vol	16	25	21	3	
Lane Flow Rate	423	245	98	172	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.611	0.385	0.16	0.269	
Departure Headway (Hd)	5.205	5.668	5.892	5.631	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	693	633	606	635	
Service Time	3.247	3.719	3.955	3.683	
HCM Lane V/C Ratio	0.61	0.387	0.162	0.271	
HCM Control Delay	16.1	12.3	10.1	10.8	
HCM Lane LOS	С	В	В	В	
HCM 95th-tile Q	4.2	1.8	0.6	1.1	

Synchro 10 Report Page 1

Intersection		
Intersection Delay, s/veh	11.9	
Intersection LOS	В	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	57	16	26	167	15	18	184	10	29	291	16
Future Vol, veh/h	5	57	16	26	167	15	18	184	10	29	291	16
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	60	17	27	176	16	19	194	11	31	306	17
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.7			11.5			11			13.3		
HCM LOS	Α			В			В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	6%	12%	9%	
Vol Thru, %	87%	73%	80%	87%	
Vol Right, %	5%	21%	7%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	212	78	208	336	
LT Vol	18	5	26	29	
Through Vol	184	57	167	291	
RT Vol	10	16	15	16	
Lane Flow Rate	223	82	219	354	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.33	0.131	0.339	0.505	
Departure Headway (Hd)	5.321	5.754	5.574	5.137	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	676	622	644	700	
Service Time	3.359	3.804	3.615	3.17	
HCM Lane V/C Ratio	0.33	0.132	0.34	0.506	
HCM Control Delay	11	9.7	11.5	13.3	
HCM Lane LOS	В	Α	В	В	
HCM 95th-tile Q	1.4	0.4	1.5	2.9	

Intersection
Intersection Delay, s/veh
ntersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	38	290	41	14	83	30	20	485	22	37	131	3
Future Vol, veh/h	38	290	41	14	83	30	20	485	22	37	131	3
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	43	330	47	16	94	34	23	551	25	42	149	3
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	31.3			14.2			85.8			15.5		
HCM LOS	D			В			F			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	10%	11%	22%	
Vol Thru, %	92%	79%	65%	77%	
Vol Right, %	4%	11%	24%	2%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	527	369	127	171	
LT Vol	20	38	14	37	
Through Vol	485	290	83	131	
RT Vol	22	41	30	3	
Lane Flow Rate	599	419	144	194	
Geometry Grp	1	1	1	1	
Degree of Util (X)	1.078	0.786	0.3	0.396	
Departure Headway (Hd)	6.482	7.047	7.887	7.587	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	563	516	459	478	
Service Time	4.49	5.047	5.887	5.587	
HCM Lane V/C Ratio	1.064	0.812	0.314	0.406	
HCM Control Delay	85.8	31.3	14.2	15.5	
HCM Lane LOS	F	D	В	С	
HCM 95th-tile Q	17.9	7.2	1.2	1.9	

ntersection	
ntersection Delay, s/veh	19.8
ntersection LOS	С

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	93	26	31	235	21	24	249	14	31	315	17
Future Vol, veh/h	8	93	26	31	235	21	24	249	14	31	315	17
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	106	30	35	267	24	27	283	16	35	358	19
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	13			19.2			18.3			23.9		
HCM LOS	В			С			С			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	6%	11%	9%	
Vol Thru, %	87%	73%	82%	87%	
Vol Right, %	5%	20%	7%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	287	127	287	363	
LT Vol	24	8	31	31	
Through Vol	249	93	235	315	
RT Vol	14	26	21	17	
Lane Flow Rate	326	144	326	412	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.584	0.283	0.599	0.719	
Departure Headway (Hd)	6.451	7.07	6.612	6.273	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	558	505	545	573	
Service Time	4.526	5.166	4.686	4.341	
HCM Lane V/C Ratio	0.584	0.285	0.598	0.719	
HCM Control Delay	18.3	13	19.2	23.9	
HCM Lane LOS	С	В	С	С	
HCM 95th-tile Q	3.7	1.2	3.9	5.9	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	38	290	45	23	83	30	33	516	50	37	142	3
Future Vol, veh/h	38	290	45	23	83	30	33	516	50	37	142	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	41	315	49	25	90	33	36	561	54	40	154	3
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	29.3			14.6			113.6			15.7		
HCM LOS	D			В			F			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	6%	10%	17%	20%	
Vol Thru, %	86%	78%	61%	78%	
Vol Right, %	8%	12%	22%	2%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	599	373	136	182	
LT Vol	33	38	23	37	
Through Vol	516	290	83	142	
RT Vol	50	45	30	3	
Lane Flow Rate	651	405	148	198	
Geometry Grp	1	1	1	1	
Degree of Util (X)	1.16	0.756	0.309	0.4	
Departure Headway (Hd)	6.413	7.224	8.05	7.658	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	566	503	449	473	
Service Time	4.43	5.224	6.05	5.658	
HCM Lane V/C Ratio	1.15	0.805	0.33	0.419	
HCM Control Delay	113.6	29.3	14.6	15.7	
HCM Lane LOS	F	D	В	С	
HCM 95th-tile Q	22.2	6.5	1.3	1.9	

Intersection	
Intersection Delay, s/veh Intersection LOS	26.3
Intersection LOS	D
milor occupin 200	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	93	40	68	235	21	32	270	32	31	351	17
Future Vol, veh/h	8	93	40	68	235	21	32	270	32	31	351	17
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	101	43	74	255	23	35	293	35	34	382	18
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	14.5			25			24.4			33.1		
HCM LOS	В			С			С			D		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	10%	6%	21%	8%	
Vol Thru, %	81%	66%	73%	88%	
Vol Right, %	10%	28%	6%	4%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	334	141	324	399	
LT Vol	32	8	68	31	
Through Vol	270	93	235	351	
RT Vol	32	40	21	17	
Lane Flow Rate	363	153	352	434	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.696	0.327	0.696	0.814	
Departure Headway (Hd)	6.901	7.677	7.112	6.756	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	523	466	507	533	
Service Time	4.962	5.755	5.172	4.815	
HCM Lane V/C Ratio	0.694	0.328	0.694	0.814	
HCM Control Delay	24.4	14.5	25	33.1	
HCM Lane LOS	С	В	С	D	
HCM 95th-tile Q	5.4	1.4	5.4	8	

	٠	-	•	•	•	•	1	1	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	38	290	45	23	83	30	33	516	50	37	142	3
Future Volume (vph)	38	290	45	23	83	30	33	516	50	37	142	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.984			0.970			0.989			0.998	
Flt Protected		0.995			0.992			0.997			0.990	
Satd. Flow (prot)	0	1824	0	0	1792	0	0	1837	0	0	1840	0
Flt Permitted		0.957			0.917			0.977			0.855	
Satd. Flow (perm)	0	1754	0	0	1657	0	0	1800	0	0	1589	0
Right Turn on Red	-		Yes	•		Yes	•		Yes	-		Yes
Satd. Flow (RTOR)		16			33			12			2	
Link Speed (mph)		50			50			50			50	
Link Distance (ft)		2418			2334			2662			1332	
Travel Time (s)		33.0			31.8			36.3			18.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	41	315	49	25	90	33	36	561	54	40	154	3
Shared Lane Traffic (%)		0.0							<u> </u>			
Lane Group Flow (vph)	0	405	0	0	148	0	0	651	0	0	197	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	0	rtigit	Loit	0	rtigitt	Loit	0	rugiit	Loit	0	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Fx		CI+Ex	Cl+Ex	
Detector 1 Channel	OIILX	OIILX		OITEX	OIILX		OILX	OIILX		OIILX	OIILX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94		0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type Detector 2 Channel		CITLX			CITLX			CITLX			CITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	reiiii			Pellii	8		Pellii	2		Pellii		
Protected Phases Permitted Phases	1	4		0	0		2			6	6	
	4	1		8	0		2	2			G	
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase	E 0	ΕO		F 0	ΕO		ΕO	E 0		ΕO	E 0	
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	

	۶	→	•	•	•	•	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	23.0	23.0		23.0	23.0		27.0	27.0		27.0	27.0	
Total Split (%)	46.0%	46.0%		46.0%	46.0%		54.0%	54.0%		54.0%	54.0%	
Maximum Green (s)	18.5	18.5		18.5	18.5		22.5	22.5		22.5	22.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		14.2			14.2			19.3			19.3	
Actuated g/C Ratio		0.33			0.33			0.45			0.45	
v/c Ratio		0.69			0.26			0.80			0.27	
Control Delay		19.2			10.3			20.3			9.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		19.2			10.3			20.3			9.2	
LOS		В			В			С			Α	
Approach Delay		19.2			10.3			20.3			9.2	
Approach LOS		В			В			С			Α	
Intersection Summary												
Area Type:	Other											
Cycle Length: 50												
Actuated Cycle Length: 42	2.8											
Natural Cycle: 55												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.80												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	zation 65.6%			IC	CU Level o	of Service	e C					
A I . '. D . '. I / . ' \ 4 =												

Splits and Phases: 3: Ten Mile Road & Lake Hazel Road

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/F			4	1	
Traffic Vol, veh/h	72	29	10	527	186	24
Future Vol, veh/h	72	29	10	527	186	24
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	82	33	11	599	211	27
IVIVIIIL FIOW	02	JJ	11	599	211	21
Major/Minor	Minor2	1	Major1	N	//ajor2	
Conflicting Flow All	846	225	238	0	-	0
Stage 1	225	-	-	-	-	-
Stage 2	621	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	_	_
Critical Hdwy Stg 1	5.42	-	_	-	-	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2 218	_	_	_
Pot Cap-1 Maneuver	333	814	1329	_	_	_
Stage 1	812	- 017	1025	_	_	_
Stage 2	536	_	_	_		
Platoon blocked, %	550	_	_	_	_	
Mov Cap-1 Maneuver	329	814	1329	-		-
		014	1329	-		-
Mov Cap-2 Maneuver			-	-	-	-
Stage 1	802	-	-	-	-	-
Stage 2	536	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.1		0	
HCM LOS	С		V. 1		•	
	J					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1329	-	397	-	-
HCM Lane V/C Ratio		0.009	-	0.289	-	-
HCM Control Delay (s)	7.7	0	17.7	-	-
HCM Lane LOS		Α	Α	С	-	-
HCM 95th %tile Q(veh	1)	0	-	1.2	-	-

	۶	→	*	1	+	•	1	1	~	/	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	8	93	40	68	235	21	32	270	32	31	351	17
Future Volume (vph)	8	93	40	68	235	21	32	270	32	31	351	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.962			0.991			0.987			0.994	
Flt Protected		0.997			0.990			0.995			0.996	
Satd. Flow (prot)	0	1787	0	0	1828	0	0	1829	0	0	1844	0
Flt Permitted		0.971			0.900			0.934			0.952	
Satd. Flow (perm)	0	1740	0	0	1661	0	0	1717	0	0	1763	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		43			8			14			6	
Link Speed (mph)		50			50			50			50	
Link Distance (ft)		2418			2334			2672			1332	
Travel Time (s)		33.0			31.8			36.4			18.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	9	101	43	74	255	23	35	293	35	34	382	18
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	153	0	0	352	0	0	363	0	0	434	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0	<u> </u>		0			0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	. 3	4		. 3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase	•						_	_				
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	

	۶	→	*	•	•	•	1	†	~	-	ţ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	22.6	22.6		22.6	22.6		27.4	27.4		27.4	27.4	
Total Split (%)	45.2%	45.2%		45.2%	45.2%		54.8%	54.8%		54.8%	54.8%	
Maximum Green (s)	18.1	18.1		18.1	18.1		22.9	22.9		22.9	22.9	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		12.5			12.5			15.3			15.3	
Actuated g/C Ratio		0.34			0.34			0.41			0.41	
v/c Ratio		0.25			0.62			0.51			0.60	
Control Delay		8.6			16.3			11.3			13.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.6			16.3			11.3			13.0	
LOS		Α			В			В			В	
Approach Delay		8.6			16.3			11.3			13.0	
Approach LOS		Α			В			В			В	
Intersection Summary												
Area Type:	Other											
Cycle Length: 50												
Actuated Cycle Length: 37.2	2											
Natural Cycle: 45												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 0.62												
Intersection Signal Delay: 12.9				lr	ntersection	LOS: B						
Intersection Capacity Utiliza	ICU Level of Service B											

Intersection Capacity Utilization 63.0% Analysis Period (min) 15

Splits and Phases: 3: Ten Mile Road & Lake Hazel Road

Synchro 10 Report Ten Mile 10/05/2020 Baseline Page 2

Intersection						
Int Delay, s/veh	1.8					
		E85	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y					
Traffic Vol, veh/h	48	19	33	287	387	81
Future Vol, veh/h	48	19	33	287	387	81
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	55	22	38	326	440	92
		_		_		
	Minor2		Major1	N	//ajor2	
Conflicting Flow All	888	486	532	0	-	0
Stage 1	486	-	-	-	-	-
Stage 2	402	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	314	581	1036	-	-	_
Stage 1	618	-	-	_	_	_
Stage 2	676	_	_	_	_	_
Platoon blocked, %	010			_	_	_
Mov Cap-1 Maneuver	300	581	1036	_	_	_
Mov Cap-1 Maneuver	300	-	1000	_	_	_
Stage 1	590	_	_	-		_
_	676	_	-	-		-
Stage 2	0/0	_	_	-	-	_
Approach	EB		NB		SB	
HCM Control Delay, s	18.2		0.9		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1036	-	0.0	-	-
		0.036	-	0.219	-	-
HCM Lane V/C Ratio						
HCM Control Delay (s)		8.6	-		-	-
				С	-	-
HCM Control Delay (s)		8.6				

Ten Mile 10/05/2020 Baseline Synchro 10 Report cg Page 1

D.COMPASS DATA

Ten Mile Residential Development

Overview

The following summarizes the results of an area of influence model run for a proposed development located northwest of Ten Mile Rd and Columbia Rd. The proposed development will consist of approximately 169 single family units with an anticipated build out by 2025. See Figure 1.

Figure 1: Development Area and Official TAZ 1153

Table 1 provides the existing demographics for TAZ 1153 and the proposed development's demographics used for the area of influence model run.

Table 1: Existing and future demographics for TAZ 1153

	20	20	2025 with	proposal	2040			
	HH	Jobs	HH	Jobs	HH	Jobs		
TAZ 1153	16	0	185	13	30	38		
Surrounding TAZs	126	25	98	33	491	39		
Total	142	25	283	46	521	77		

Model Plots

The figures on the following pages show the area of influence and projected demand of the new development under different scenarios.

Figure 2: Area of Influence: 2025 peak hour demand percent contribution to the total peak hour demand	3
Figure 3: 2025 Peak Hour Demand with Proposed Development	
Figure 4: 2025 Peak Hour Demand without Proposed Development	5
Figure 5: Surrounding TAZs	6
Figure 6: 2020 to 2025 Compounded Annual Growth Rate	7
Figure 7: 2025 to 2030 Compounded Annual Growth Rate	8
Figure 8: 2030 to 2040 Compounded Annual Growth Rate	9

Figure 2: Area of Influence: 2025 peak hour demand percent contribution to the total peak hour demand ⊔nderRd 13 Black Cat Rd Ten MeRd 69 ê le Haze I Rd Lake Hazel Rd Lake Hazel Rd Lake Hazel Rd Lake Hazel Ru Lake Hazel Rd Lake Hazel Rd 3 3 3 3 2.7 62 5.9 4.8 4-5 Dumont Ln 0.2 13.1 Ten Mile Rd 16.3 Ten Mile Rd 100 73.9 Ten Mile Ro 1153 Columbia & 67 Columbia Rd Columbia 3-7 2.9 28 2.8 1 Ten MileRd

Figure 3: 2025 Peak Hour Demand with Proposed Development

Figure 3:	2025 Peak Ho	our Dem	and with Pi	oposed Devel	opment											
		354 Black Cat Rd	Black Cat Rd 202					Ten Mile Rd 510	307 Ten Mile Rd					Linder Rd 471	225	Linder Rd
199	19	9		Lake Hazel Rd 295		Lake Hazel Rd 295	295	354		Lake Hazel Ro 411	1		Lake Haze 433	l Rd	421	484
270 Hazel R	27 d Lake Ha	3 ≥ szel Rd CJE Young Budy Budy Budy Budy Budy Budy Budy Budy	125 Black Cat Ro	328 Lake HazelRd		328 Lake Hazel Rd	328	597 Ten Mile Rd	Ten Mile Rd 335	342 Lake Hazel Ro	49	29	345 Lake Hazei	Rd	385	347
		314	124					464 Ten Mile Rd	Ten Mile Rd 283							
		311 Black Cat Rd	Black Cat Rd				115	150	ਲ ਹ					Linder Rd 444	230	D D
		Rd	2			Centrold_1153		Ten Mile Rd	Ten Mile Rd					Ĭ,	-	-
	Columbia Rd	Black Carl Rd 308	Columbia R	d	Columbia Rd	11:	53 Columi	Tell Mile Rd 422	Columbia Mile Ba	a Roi	Columbia Rd		Columbia Rd	01-15-01		
<u> </u>	280		347	348	358	372	37	2 F	⁻ 375		408		418	Columbia Rd 428	6	olumbia 420
(330 Dolumbia Ro		433 Columbia R	433 d	434 Columbia Rd	437	43 Columi	bla Rd	351 Columbia	Rd	364 Columbia Rd		366 Columbia Rd	368 Columbia Rd	С	322 Solumbia
		e C	- E					Ten Mile Ro 621	420 Ten Mile Rd					_		

Figure 4: 2025 Peak Hour Demand without Proposed Development

Figure 4: 202	25 Peak Hour De	emand witho	out Proposed De	evelopment				ı						_	
	Black Cat Rd	Black Cat Rd 202					Ten Mile Rd 503	313 Ten Mile Rd					Linder Rd	218	Linder Rd
Hazel Rd 198	Lake Hazel Ro 198	1	Lake Hazel Rd 288	I	Lake Hazel Rd 288	411	470		Lake Hazel Rd 394			Lake Haze 416	l Rd	412	475
265 : Hazel Rd	287 次 Lake Hazel Ro	130 Black Cat Rd	325 Lake Hazel Rd	ı	325 Lake Hazel Rd	359	374		328 Lake Hazel Rd	49	29	330 Lake Haze	l Rd	357	340
	e e						438 Ten Mile Rd	Ten Mile Rd 278							
	Black Cat Rd	Black Cat Rd					lle Rd 8	8 lie Rd					Linder Rd 442	223	LinderRd
	mbla Rd	eicelle Back Carl Rd	Rd	Columbia Rd	11 8\$11 Ploutue(377	14 anij Pold_1153	িজ Ten Mile Rd Ten Mile Rd 436 438	9 276 278 Mile Rd Ten Mile Rd	la Rd Q	olumbia Rd		Columbia Rd	Columbia Rd		Columbia
3	280	350 417	417	362 418	377 422	42	36	7 386 359		402 374	_	412	421 378	Ľ	412
Colum	nbla Rd 문 동	Columbia	Rd	Columbia Rd		Colum	Ten Mile Ror 23 622	414 Ten Mile Rd 99	la Roi Co	olumbia Rd		Columbia Rd	Columbia Rd	C	Columbia

Figure 7: 2025 to 2030 Compounded Annual Growth Rate

(EMDD)(#)

(Licensed to Community Planning Association)

Figure 8: 2030 to 2040 Compounded Annual Growth Rate

2020 Peak Ho 10/13/2020	ur Build: 2	2020 Demo	graphics o	n 2020 Netw	ork (New Mod	el v2015)					
Black Cat Rd	Black Cat Rd				Ten Mile Rd 439	224 Ten Mile Rd			Linder Rd 424	86 Linder Rd	
Lake Hazel Rd		Lake Hazel Rd 163		Lake Hazel Rd 163	Lake Hazel Rd 202 206	Lake Hazel Rd <mark>251</mark>		Lake Hazel 260	Rd	La 127 141	ake Hazel Rd 142
126 Lake Hazel Rd Cat P 787 784	60 Black Cat Rd	146 Lake Hazel Rd		146 Lake Hazel Rd	157 158 Lake Hazel Rd	<mark>211</mark> Lake Hazel Rd	91	212 Lake Hazel	Rd	159 155	156 ake Hazel Rd
240					414 Ten Mile Rd	Ten Mile Rd					
237 Black Cat Rd	Black Cat Rd								Linder Rd 417	157 Linder Rd	
					Ten Mile Rd 414	208 Ten Mile Rd					
Black Cat Rd 235	61 Black Cat Rd				Columbia Rd F an Mile 712 812 813	PB Wie Columbia Rd 248					
lumbia Rd 196 237	Columbia Ro	204	Columbia Rd 216	Columbia Rd 225	Columbia Rd ⊕ 231	Columbia Rd 248	Columbia Rd 291	Columbia Rd 296	Columbia Rd 304	Columbia Ro	I
umbia Rd	317 Columbia Ro	317 d	318 Columbia Rd	321 Columbia Rd	322 Columbia Rd	286 Columbia Rd	303 Columbia Rd	305 Columbia Rd	306 Columbia Rd	196 Columbia Ro	I
Black Cat Rd	61 Black Cat Rd				Ten Mile Rd 576	320 Ten Mile Rd			Linder Rd 546	306 Linder Rd	
D:\UAG\2011Model\	calibration\Ba	se\TIP\FY2125R	6\b2020\PH A	SSIGN b2020.NE	<u> </u> :T						

D:\UAG\2011Model\calibration\Base\TIP\FY2125R6\b2020\PH_ASSIGN_b2020.NET New Regional Model calibrated to 2011/12 conditions - completed in January 2015

Cube

2025 Peak Hour Build (Special Run): 2025 demographics on 2021 Build network (New Model v2015) 10/20/2020 354 Black Cat Rd Black Cat Rd 202 Linder Rd 471 225 Linder Rd Ten Mile Rd 510 307 Ten Mile Rd Hazel Rd Lake Hazel Rd 295 295 354 411 433 484 Black Cat Rd DB lezeH 421 485 328 328 328 49 Durrant Ln Durrant Ln 29 344 342 345 365 Lake Hazi en Mile Rd 347 347 125 Black Cat Rd Lake Hazel Rd Lake Hazel Rd Ten Mile Rd 335 Lake Hazel Rd Lake Hazel Rd Lake Hazel Rd 314 124 464 Ten Mile Rd Ten Mile Rd 283 Black Cat Rd 125 Black Cat Rd 115 150 Linder Rd 444 230 Linder Rd 56 81 424 Ten Mile Rd Ten Mile Rd 311 Black Cat Rd 308 125 Black Cat Rd Ten Mile Rd 422 310 Ten Mile Rd Columbia Rd 347 348 358 Columbia Rd Columbia Rd 372 372 408 418 428 433 433 437 434 437 351 364 366 368 322 Columbia Rd Ten Mile Rd 621 420 Ten Mile Rd Black Cat Rd 240 93 Black Cat Rd inder Rd 609 357 inder Rd

D:\UAG\2011Model\calibration\Base\AOIRequests\FY2020\TenMileKuna_TAZ1153\b2025\PH_ASSIGN_b2025.NET New Regional Model calibrated to 2011/12 conditions - completed in January 2015

Cube