The Big and Small **Big Location Data Transportation Analysis**

Vijayaraghavan (Vijay) Sivaraman, PhD, PE Texas A&M Transportation Institute

JUNE 7th, 2024, COMPASS WORKSHOP SERIES

Overview

01

Data Sources: Telecom, Smartphone Applications and Vehicles 02

Applications:
Visits, Flows, Operational
Analysis, Visualization
and Dashboards

03

Management:
Data Acquisition, Tools,
Skills, Governance
Storage, Security, Access

Workshop Sessions

Sources

- Telecom
- Smartphone
- Vehicles

Products

- Data Schema
- Resources
- Management

Applications

- Visits
- Trips
- Routes
- Flows

Data Sources

Medium of Mobility Data Sources

Telecom

- Location Estimation (coarse)
- Call/Text Signal Transmission
- Carrier sample (wide coverage)
- Diverse and Persistent sample

Value:

- Regional planning
- External studies
- Long distance travel analysis

Trade Offs:

- Rural coverage (function of towers)
- Geographic bias (carrier cost/choice)
- Could see change with 5G

Telecom Data: Typical Schema

Typical Schema

- Location
- Timestamp
- Device ID
- Message Type: Call, Text/SMS etc.

Characteristics

- Persistence in pings and devices
- Wider coverage
- Coarser location resolution

Time Stamp and cell tower location for mobility analysis by subscriber --→ yields activity locations, estimated home/work by night/daytime locations

Anonymized/hashed phone

and subscriber id

Use Type

- Better represents large zone travel
- Regional and Long-Distance Flows
- External Analysis
- Internal Regional Flows (Resident | Visitor Segments)

```
"equip hash": "146dabee-0d43-4fdf-8a04-89b02fd704a3",
"sub hash": "d601f36e-353b-4266-87e4-6f4c2d7312e8",
"call start timestamp": "2023-03-24 13:08:23",
"call end timestamp": "2023-11-29 08:30:24",
"base station calling id": "BSID4434",
"base station calling latitude": -39.293004,
"base station calling longitude": 37.261319,
"activity type": "SMS",
"cell service": "3G"
"equip hash": "3b6e7564-c35a-41ce-9150-cface05f8bf3",
"sub hash": "c2bd612c-5142-4b6f-981e-952c671d63c7",
"call start timestamp": "2023-10-13 03:03:34",
"call end timestamp": "2023-11-23 15:16:29",
"base station calling id": "BSID6210",
"base station calling latitude": -63.742168,
"base station calling longitude": -146.070934,
"activity type": "Voice",
"cell service": "3G"
"equip hash": "3420cc8c-0a25-4458-947f-32ee8ef27fdd",
"sub hash": "alb6a826-4dcb-47b1-80cd-8bd17744c644",
"call start timestamp": "2023-04-17 11:16:18",
"call end timestamp": "2023-12-14 10:06:24",
"base station calling id": "BSID7478",
"base station calling latitude": 33.916246,
"base station calling longitude": -62.730307,
"activity type": "SMS",
"cell service": "2G"
```

Smartphone Applications

Application dependent (Weather, Games)

OS dependency (iOS & Android)

Location:

- Telecom, GPS or Wi-Fi
- App configuration dependent

Data Collected For : Advertising

- Device persistence
- POI Visits / Trip Ends/ Generation
- Select regional travel patterns

Trade Offs:

- App Dependent Sample
- Lack of persistent pings
- Variable Location accuracy

Smartphone Applications: Typical Schema

Typical Schema

- Location
- Timestamp
- Advertising ID

Characteristics

- Device Persistence
- App activation dependent pings
- Specific coverage use areas such as malls etc.
- Location Resolution depends on : Telecom, Wi-Fi, GPS

Use Type

- Better represents visits to points of interests, stores
- Trip Generation, Visitor Analytics, Regional Travel
- External Analysis (Needs routing no breadcrumbs)
- Internal Regional Flows (Resident | Visitor Segments)

```
Anonymized Advertising Id
                                  "adv hash did": "6b2e3e18-3c51-4e13-8a91-c3f9e8f78e3f",
and Phone Operating System
                                  "device ping timestamp": "2023-03-14 12:34:56",
                                  "device ping latitude": 37.7749,
                                  "device ping longitude": -122.4194,
 If location estimated using
                                  "device ip address": "192.168.1.1",
 Wi-Fi (there could be an IP)
                                  "location accuracy": 10.5
                                  "adv hash did": "8f42e2b7-5a54-4b3d-85d9-0b7e5f4b63b8",
                                  "os type": "Android",
                                  "device ping timestamp": "2023-07-22 15:45:30",
                                  "device ping latitude": 40.7128,
                                  "device ping longitude": -74.0060,
                                  "device ip address": "10.0.0.1",
                                  "location accuracy": 20.0
                                  "adv hash did": "3cla4c69-5f72-4a2e-b8f1-7a9e4b5a2d0e",
                                  "device ping timestamp": "2023-11-01 08:12:45",
                                  "device ping latitude": 34.0522,
                                  "device ping longitude": -118.2437,
                                  "device ip address": null,
                                  "location accuracy": 15.3
                                 Location accuracy could vary based on estimation
                                  technology (Tower, Wi-Fi, GPS and its availability)
```

and is also dependent on App design

Vehicles

- Mobility Data (GPS Enabled)
 - Waypoints
 - Trips
 - Trajectories
- Vehicle Behavior (Not all is available)
 - Hard braking
 - Acceleration
- Data Collected For: Telemetry

Value:

- Relatively High Location Accuracy
- Traffic Operations Analysis
- Trip Persistence

Trade Offs:

- Lack of Device persistence (planning)
- Trip End Definition (On/Off) Linking
- Vehicle Type Bias (OEM)

Fleet Vehicles: Typical Data Schema

Typical Schema

- Trip ID, Provider ID, Device ID (may or may not be persistent)
- Timestamp
- Location Latitude, Longitude
- Vehicle Weight Class (1: < 14K lbs., 2: 14k-26K lbs., 3: > 26k lbs.)
- Provider Driving Profile (Consumer, Taxi, Delivery/Service, Fleet)
- Probe Source Type (1- Embedded GPS or 2-Mobile Device)

Characteristics

- Location is obfuscated (still better than cell phone location)
- Additional attributes, predominately represents commercial travel
- Not all devices have persistent ID across trips or over days
- Includes trajectories (route data)

Use Type

- External travel analysis
- Upcoming applications to understand internal commercial travel
- Truck parking and operational analysis (congestion)

```
"trip id": "f68274c0-f94e-46ea-97b3-c5e45a4b4ae5",
"device id": "DEV295",
"provider id": "PROV007",
"start date": "2023-09-18T14:23:09",
"end date": "2023-12-02T02:17:15",
"start latitude": -11.044691,
"start longitude": -101.034402,
"end latitude": 32.755458,
"end longitude": -39.197758,
"provider type": 2,
"driving profile": 1,
"probe source type": 2,
"vehicle weight class": 1
"trip id": "080702dc-daec-4df4-bf9a-140cc27d584f",
"device id": "DEV466",
"provider id": "PROV010",
"mode": 5.
"start date": "2023-07-12T13:39:46",
"end date": "2023-08-15T06:06:23",
"start latitude": -85.143501,
"start longitude": -113.895258,
"end latitude": 10.674406,
"end longitude": 122.747675,
"provider type": 1,
"driving profile": 2,
"probe source type": 1,
"vehicle weight class": 2
"trip id": "ddbce643-4b0b-497f-ac5f-4b27ae258389",
"device id": "DEV376",
"provider id": "PROV010",
"start date": "2023-03-02T14:44:36",
"end date": "2023-09-06T09:03:56",
"start latitude": -82.088141,
"start longitude": 52.335376,
"end latitude": 50.565306,
"end longitude": 175.105253,
"provider type": 1,
"driving profile": 3,
"probe source type": 2,
"vehicle weight class": 3
```

Connected Car Vehicles: Typical Schema

Typical Schema

- Trip | Journey (depends on ignition status)
- No persistence (cannot consolidate trips by vehicle)
- Vehicle type, fuel, events (operational applications)

Characteristics

- Trips and Trajectories
- OEM dependent (biased towards a brand/newer cars)
- Persistent location and best resolution

Use Type

- Better represents trajectories
- Operation analysis (Safety, Queuing, Intersection Use)
- Planning (explored for non-commercial trip table)

```
"data record id": "lfbb6e3b-44le-4b89-82cl-0e8b9ale345c",
"trip journey id": "a4dle7f4-5a3d-4d8b-9lal-3e9c6e4c8d2b",
"vehicle type": "sedan",
"vehicle fuel": "gas",
"vehicle year": "2021",
"record timestamp": "2023-06-15 12:45:30",
"record latitude": 34.052235,
"record longitude": -118.243683,
"record speed": 65.5,
"record heading": "N",
"record ignition status": "on",
"event type id": "event123",
"event type": "seat belt"
"data record id": "2e5b9c76-5a4e-49a1-8212-2c9e7b5d8e2a",
"trip journey id": "b2c4d6e3-6f4b-4e7d-92b1-4f8d7e5c8d3c",
"vehicle type": "suv",
"vehicle fuel": "diesel",
"vehicle year": "2018",
"record timestamp": "2023-07-22 15:50:45",
"record latitude": 40.712776,
"record longitude": -74.005974,
"record speed": 55.0,
"record heading": "E",
"record ignition status": "off",
"event type id": "event456",
"event type": "door status"
"data record id": "3f9b8e12-7c4d-48b1-9312-3e7f9e6b8d2c",
"trip journey id": "c3d5e8f7-7f5b-4d9c-93b2-5f9d8e6c8d4d"
"vehicle type": "pick-up",
"vehicle fuel": "hybrid",
"vehicle year": "2021",
"record timestamp": "2023-08-30 10:15:20",
"record latitude": 51.507351,
"record longitude": -0.127758,
"record speed": 45.2,
"record heading": "S",
"record ignition status": "on",
"event type id": "event789",
"event type": "braking"
                                                          12
```

Location Estimation Technologies

• Phone Based: Legacy Source, Larger Sample and Wider Coverage, Low Resolution Location Estimate, Regional Applications – 4G/LTE.....5G (finer resolution in the future ?)

 Smartphone Application: Current Source, Variable Sample – highly dependent on app, High Location Resolution, Lacks persistence to consistently identify trips, Local Site Visits/Trip Ends

• Vehicle Based: Persistent and High-Resolution Sample, Link Level/Operational Applications, Specific to Vehicles. Roadway Traffic Operational Analysis

Medium	Cellular Phones	Smartphone Applications	Vehicles
Telecom	X	X	
Wi-Fi		X	
GPS		X	X

Trivia 1

- Which source has the largest sample size in terms of representing passenger travel
 - Telecom widest subscriber bases (carrier dependent bias red vs. yellow vs. purple)
- Which source is more conducive to representing trip ends / attractions to point of interest
 - Smartphone Applications influenced by geofencing ad targeting function (app dependent)
- Which source is most conducive to representing travel paths/breadcrumbs
 - Vehicles representing passenger from vehicle (connected car) and/or commercial fleet data (OEM)
- Does any source provide true activity location
 - No All are estimated based on derived location and stay point estimation procedures & algorithms

Data Products

Data Products

Raw (Sample):

- Delivered as is, with obfuscation : GPS trips, trajectories, waypoints, LBS logs
- Requires in house storage solutions, staff, and big data skills
- Custom analysis, integration and visualization

Transformed:

- Delivered as aggregated scaled product: trip tables, visits for points of interest
- Requires specification for study area, period etc.
- Inputs for in house downstream analysis, resulting visualization etc.

Modeled:

- Delivered as aggregated synthetic product: modeled trips by purpose, mode etc.
- Accessible via vendor platform as standard product or customized
- Likely cannot be used for in house analysis, possible to produce corresponding visuals

Visits - Points of Interest Products

Typical Attributes

- Daily Visits by Polygon (custom ,place key, parcels)
- Business Name, NAICS
- TOD, DOW, Home Geographies (Census)

Characteristics

- App activation dependent pings
- Specific coverage use areas such as malls etc.
- Resolution dependent on: Telecom, Wi-Fi, GPS

Applications

- Visitation Analysis (Real Estate, Parks etc.)
- Special (Game/Concerts) Events, Weather Events
- Site Trip Generation (Special Generators)

Source

Smartphone Applications (Primarily LBS data sources)

```
"placekey": "3e3c5f5a-2d5e-4a9e-9b2e-6e3c4f5a6b8e",
"business name": "Starbucks",
"business long": -122.4194,
"start date range": "2023-01-01",
"end date range": "2023-01-07",
"visits by day": 120,
"visitor_home_blockgroups": ["060750601001", "060750601002", "060750601003"],
"visits by home blockgroups": [30, 50, 40],
"median visit dwell time": 15.5,
"dwell time distribution": [10, 20, 30, 40, 20]
"placekey": "4d6e7f7a-3f7e-4b9e-9d5e-7f6d5f7a8c9e",
"business name": "McDonald's",
"business lat": 40.7128,
"business long": -74.0060,
"start date range": "2023-02-01",
"end date range": "2023-02-07"
"visits by day": 200,
"visitor home blockgroups": ["360610097001", "360610097002", "360610097003"],
"visits by home blockgroups": [70, 80, 50],
"median visit dwell time": 20.0,
"dwell time distribution": [15, 25, 35, 45, 30]
"placekey": "5e7e9f9a-4e9e-4c9e-9e5e-8f7e6f9a8d0e",
"business lat": 51.507351,
"business long": -0.127758,
"start date range": "2023-03-01",
"end date range": "2023-03-07",
"visits by day": 300,
"visitor home blockgroups": ["E02004761", "E02004762", "E02004763"],
"visits by home_blockgroups": [100, 120, 80],
"median visit dwell time": 25.3,
"dwell time distribution": [20, 30, 40, 50, 40]
```

Trips (Origin-Destination) Products

Typical Schema

- Custom Defined Origin Destination
- Day of Week (Average | Total | Select Dates)
- Time of Day (Daily | Peak | off-Peak)
- Purpose (HBW | HBO| NHB)
- Mode (Auto | Bike | Transit)

Characteristics

- Standard or Custom Zone Structure (Work with Vendor)
- Available for pre-defined configuration (see Schema)
- · Could be sourced from Raw, Transformed or Modeled data

Use Type

- Regional External Analysis (To/From, Through Region)
- Long Distance Travel Analysis
- Internal Regional Flows (Resident | Visitor Segments)

•			
	0	D	Trips
	1	1	234
	1	2	324
	3	5	646
			457
	N	1	435
	N	4	454
	N	3	234

```
"origin": 12.
"destination": 34,
"purpose": "work",
"time of day": "am",
"day of week": "weekday",
"mode": "auto",
"trips": 15
"origin": 56,
"destination": 78,
"purpose": "non-work",
"time of day": "pm",
"day of week": "weekend",
"mode": "walk",
"trips": 20
"origin": 23,
"destination": 45,
"purpose": "other",
"time of day": "mid-day",
"day of week": "custom",
"mode": "bike",
"trips": 10
"origin": 67,
"destination": 89,
"purpose": "work",
"time of day": "am",
"day of week": "weekday",
"mode": "transit",
"trips": 30
"origin": 34,
"destination": 56,
"purpose": "non-work",
"time of day": "pm",
"day of week": "weekend",
"mode": "auto",
"trips": 25
                             18
```

Select Zone: Trips Product Derivative

Product

- Raw: Observed Trips (Source dependent)
- Transformed: Adjusted Sample Observations
- Modeled Outputs: ~ Regional Model Results

Characteristics

- Small Sample based on (day, period etc.)
- Transform/Modeled (adjusted to expansion biases)

Uses

- New Developments in zone (before/after, trends)
- Cautious about biases (Sample Vs. Expanded Results)
- Check distribution with other sources (sanity checks)

D	Trips	
2	234	
3	324	
4	645	
5	45	
•	646	
•	457	
N	435	
	2 3 4 5	

Select Link: Trips & Trajectories Derivative

Product

- Raw: Observed Trips/Trajectories
- Transformed: Adjusted Sample Observations
- Modeled Outputs: ~ Regional Model Results (Agent)

Characteristics

- If sample, could be small based on slicing (day, period etc.)
- Transformed /Modeled (adjusted or calibrated to regional controls)

Uses

- Corridor analysis (Auto, Truck, Transit Trips)
- Caution about biases (Sample Vs. Adjusted Results)
- Check distribution with other sources/counts

0	D	Trips
1	2	25
3	5	5
12	24	11
1	7	17
•	•	6
•	•	19
21	79	17

100 Trips

Trivia 2

- What type of data sources can support select link analysis?
 - Select link analysis can be produced from raw (sample trips/trajectories) or modeled data
- Which data sources provide information on resident/visitor and home location estimates?
 - Predominately LBS and Telecom based products with Device ID persistence makes it feasible
- Are travel purposes and modes reported in passive data imputed or observed?
 - Most data sources impute these attributes, least likely to be observed data

Applications: Part 1

Applications: A spatial perspective

Visits – Select Application

Investigating:

- Special Events : Gameday | Concerts
- Inclement Weather
- Sources: LBS Data, Demographics

Sources

Daily Visits to Business (LBS daily visits: SafeGraph)

How to use/inferences to make

- Regional shift in visitations
- Time to recovery
- Can be used in combination with trips/trajectories to changes in local travel

Select Zone/Polygon: Visits Application

Kyle Field, Bryan College Station: Alabama Vs Texas A&M (Oct 9, 2021)

Work done as part of TxDOT - FY 23 Inter Agency Contract (IAC) evaluating potential applications and advances in using passive data

Inclement Weather: URI 2021- Recovery

	Region	Austin	El Paso	Houston	Beaumont	Bryan College Station	Waco	Midland Odessa	Dalhart	Marshall	Stephenville
o	14 Feb	0.38	1.08	0.74	0.74	0.44	0.28	0.34	0.51	0.56	0.36
Rate	15 Feb	0.29	1.21	0.28	0.20	0.36	0.30	0.49	0.94	0.21	0.43
	16 Feb	0.47	1.26	0.50	0.38	0.53	0.52	1.16	1.03	0.37	0.59
) Ve	17 Feb	0.40	0.98	0.57	0.59	0.49	0.37	0.95	1.12	0.27	0.67
Recovery	18 Feb	0.47	1.00	0.78	0.93	0.67	0.51	1.12	1.02	0.40	0.82
~	19 Feb	0.83	1.03	1.04	1.14	1.01	1.01	1.17	1.23	0.58	1.08
	Days to Recover	6	0	5	5	5	5	2	2	9	5
	Snowfall(in)	5.7	4.3	0.76	2.1	3.05	3.89	4.12	6.4	10.4	4.1
Feb 14th-	Precipitation (in)	1.44	0.4	1.76	2.83	2.79	0.59	0.70	0.5	1.61	0.31
	Days below 32F(Max)	5	0	1	1	3	5	5	5	2	5
ŭ	Days below 32F (Min)	6	5	6	5	6	6	6	6	6	6
	Recovery Scale		L	ow			Medium			High	

Work done as part of TxDOT - FY 23 Inter Agency Contract (IAC) evaluating potential applications and advances in using passive data

Sample Trips: Truck Parking

https://trkparkingtx.tti.tamu.edu/

Attribute: Non-moving trips

Data Sources: Trajectory, Waypoints

Sample Trips and Trajectories: Select Link

	% of Trips			
Range	All (Total)	Truck (Total)		
Under 10 miles	80.3	17.1		
10 to 25 miles	6.7 (87.0)	8.4 (25.5)		
25 to 50 miles	5.5 (92.5)	29.3 (54.8)		
Over 50 miles	7.5 (100.0)	45.2 (100.0)		

Passing Risk: Behavior Analysis Using CV Data

Two criteria for inclusion:

- Pass from WB to EB lane for minimum of 6 seconds (before returning to WB lane)
- While passing, must increase speed a minimum of 6.21 mph (10km/h)

Bike | Ped Example - Integrating Multiple Sources

- Investigating: Latent Demand for Bike | Ped Trips
 - Mixed Use Environments
 - Potential for Conversion
 - Safety
 - Demographics

- Short Trips (GPS raw trips: INRIX)
- Daily Visits to Business (LBS daily visits: SafeGraph)
- Mode Split (Modeled trips: Replica)

How to use/inferences to make

- Not all data and everywhere is good
- Use a mix of sources to get a relative measure
- Combined local knowledge and expertise with diverse data

Austin Example – Google Bike/Ped Facilities

Based on an ongoing project "Estimating Latent Bicyclist and Pedestrian Demand for Shared Use Path Design", funded by the Texas Department of Transportation (TxDOT) 0-7152. Principle Investigator: Ipek N. Sener (i-sener@tti.tamu.edu)

Bike | Ped Example: Austin – Raw Short Trips

Bike | Ped Example: Austin – LBS Visits

Bike | Ped Example : Austin - Model Estimates

Trivia 3

- What is the unit of reporting across raw(sample) data by sources?
 - LBS and Cell phone are devices (persons), where GPS data is primarily vehicle units
- What is the difference between raw, transformed and modeled
 - Majority of raw data and its attributes are observations,
 - Transformed data is either scaled to population/ vehicles with contextual attributes, and
 - Modeled is representative of regional travel as in travel demand models with contextual attributes
- What are broader categories of biases can one encounter with passive data
 - Spatial bias: Occurs with lack of coverage of an area or due to location estimation method/source
 - Temporal bias: Occurs as its dependent on the time of use on application (not activity reflection)
 - Demographic bias : Source data dependent

Applications: Part 2

Regional Travel Demand Model Applications

Investigating:

- Complement traditional commercial vehicle (cv) survey
- Low sample size, primarily light vehicle representation
- Need to better understand regional (cv) impact in models

Sources

INRIX sample trips and trajectories

How to use/inferences to make

- Develop sample daily trip tables by weight class
- Synthesize with land use and regional VMT data to estimate CV travel
- Use as input for regional travel demand models

Trips Samples by Weight Class 1

Department

INRIX Weight Class 2 (14,000 - 26,000 lbs.): Delivery | Services

INRIX Weight Class 3 (> 26,000 lbs.): For Hire Truck | Fleet

Survey Vs. Passive Data Daily Commercial Trips

Regional Quick Response Model (RQRM)

Objective:

- Standalone web-based passive data based RQRM Model
- Mimics traditional travel demand model (auto only)
- Application to low-growth areas, sub-model or new model area (no survey data)

Sources

LBS (Smartphone Applications) and Vehicle GPS Data

How to use/inferences to make

- Understand one or more growth scenarios
- Assess the effect of roadway widening projects or addition of new roadway

TexPACK TDM Vs. QRM

RQRM – Travel Market Segments

Example - Regional Trip Table

Trip Movement Type
Internal – Internal
External - Internal (EXLO)
External – External (THRU)

Trip Table Travel Market Segment Reference

Blue bins represent within region trips, includes

- Noncommercial resident auto trips for work & other
- Noncommercial visitor auto trips for business/recreation
- Local commercial (delivery/service travel)

Purple bins includes:

- Long haul commercial truck trips entering/exit region
- Noncommercial visitor auto trips entering/exit region
- Noncommercial resident auto trips enter/exit region

Lavender bins includes:

- Long haul Commercial truck trips passing through the region
- Non-Commercial auto trips passing through the region

RQRM – Travel Market: Data Sources

RQRM - Travel Market: Data Processing

RQRM – Data and Model Framework

INRIX – VDF Applications 1

BPR VDF Calibration Process ($T_f = To \times (1+\alpha \times [v/c]^{\beta})$)

INRIX – VDF Applications 2

Data decision making pathways

In House Application Development

Data Lake Management

- Traditional surveys and data
- Big Data (Points, Trips, Trajectories)
- Schemas & Documentation

Data Pipeline Development

- Scale methods, notebooks to production
- QA /QC process Integration

Transportation Science Platform

- Access to non-traditional users (SQL)
- Intermediate products for analysis
- Platform for quick visualization and reports

Documentation | Code Repositories

- GitHub code version control and collaboration
- Confluence : documentation and analysis review

Data Governance & Management

Acknowledgements

Thank you – Questions?

Vijay Sivaraman (813) 389-8224 V-sivaraman@tti.tamu.edu

