RAILS WITH TRAILS
FEASIBILILTY AND PROBABLE COST STUDY

September 4, 2019

2 | COMMUNITY PLANNING ASSOCIATION OF SOUTHWEST IDAHO

Table of Contents

INTRODUCTION5
PROJECT PURPOSE 5
BACKGROUND STUDIES 5
TRAIL TYPICAL SECTIONS 6
TYPICAL SECTION A 6
TYPICAL SECTION B 7
TYPICAL SECTION C 8
TYPICAL SECTION D 8
TYPICAL SECTION E 9
TYPICAL SECTION F 9
CROSSING TREATMENT DEVELOPMENT 10
CROSSING TYPE 1 - CROSS WALK AND SIGNS 10
CROSSING TYPE 2 - ACTIVE WARNING BEACONS 11
CROSSING TYPE 3 - PEDESTRIAN HYBRID BEACON 12
CROSSING TYPE 4 - FULL TRAFFIC SIGNAL 13
Crossing Treatment Selection Guidance 14
RIGHT OF WAY 14
UTILITIES 15
ENVIRONMENTAL 15
GEOTECHNICAL 15
ALIGNMENT AND CROSSING SUMMARY 16
NAMPA SECTION 16
MERIDIAN SECTION 17
WEST BOISE SECTION 19
BOISE SPUR SECTION 20
CENTRAL BOISE SECTION 21
SOUTH BOISE SECTION 22
PROBABLE COST SUMMARY 23
CAPITAL IMPROVMENTS 23
ATTACHMENTS: 24
ALIGNMENTS 24
COST SUMMARY SPREADSHEET 24
APPENDIX A - TYPICAL SECTIONS 25
APPENDIX B - CROSSING TREATMENTS 26
APPENDIX C - COST SUMMARY TABLES 27

INTRODUCTION

PROJECT PURPOSE

The purpose of this feasibility and cost study is to analyze a trail alignment along the Union Pacific Railroad (UPRR) in the Treasure Valley, connecting the City of Nampa, City of Meridian and the City of Boise. The kind of trail is known as a "Rail with Trail" (RWT) and is common in many parts of the United States as railroads run at a relatively flat grade and can connect town centers as many cities in the western United States built up around the railroad. For the purposes of this study, Alta assumed the UPRR will allow the use of their Right of Way (ROW) for the trail. This is a process that will need to be undertaken by the Community Planning Association of Southwest Idaho (COMPASS) and all of the local municipalities and the Ada County Highway District (ACHD).

This study is a high-level look at the most feasible alignment to create the backbone trail that local trails can tie into and branch off of. Where existing trails along the corridor were in place, or are in the design phase to be constructed shortly, these trails were utilized. Alta did not take into account any costs to replace sections that already meet the standard multi-use path sections, namely the path along South Federal Way.

This study is intended to be the first step in the planning process, identifying a feasible path route, section, crossing treatments at the roads, and an opinion of probable cost (in 2019 dollars). UPRR has not been contacted and still remains the single largest risk to this regional project being constructed and this study can serve as the catalyst to garner support from all parties in the southwest Idaho region, including municipalities, agencies, private companies and higher educational institutes.

The resulting design is not considered final and the estimate is intended to be a baseline to build off of and revisit when more reliable cost data is known, or unit costs substantially change, or can be updated with more refined or specialized sections. As such, the design is delivered in a native software format, KMZ's for alignments, and excel file for the cost data.

BACKGROUND STUDIES

Numerous existing studies have been undertaken along this corridor by the local agencies that have completed bits and pieces of the Rails with Trails Study along the corridor. These include the following:

- Ada County Highway District Roadways to Bikeways Plan (2009 with 2018 addendum)
- City of Nampa Bicycle \& Pedestrian Master Plan (2011)
- Meridian Pathways Master Plan (2010)
- COMPASS Map book corridor Constraints (2016 and 2017)
- City of Boise Alpine Trail Plan (2013)
- City of Meridian UPRR Rail with Trail Study (2015)

Numerous other cost studies and freight analysis reports have also been included. This study used these existing studies and a jumping off point to create the costing information.

TRAIL TYPICAL SECTIONS

COMPASS and Alta developed the following six sections to address the general changing character of the multi-use path in the Treasure Valley. We acknowledge that many more sections will need to be developed as the project progresses; however, at this stage of the project these sections address the general changing characteristics that have cost differences we can capture.

The segments that these sections apply are arranged from the lowest to highest costs to implement. Each section is associated with a color that corresponds to the following Table. This allows for a quick reference to understand what areas of the project are more expensive and likely more engineering and investigation required.

TYPICAL SECTION A

Typical Section A is the most prevalent section on the project and consists of the following:

- 25 -foot right of way within the existing UPRR Property
- 12-foot wide multi-use path; five (5) inches of concrete over eight (8) inches of base course ${ }^{1}$
- Four (4) foot tall split rail wooden fence delineating the edge of path; set at a minimum 25 feet from centerline of adjacent tracks
- 6.5-foot landscape buffers on either side of the path.

[^0]
TYPICAL SECTION B

Typical Section B is located in and around the City of Meridian and consists of the following:

- 25-foot right of way within the existing UPRR Property
- 12-foot wide multi-use path; five (5) inches of concrete over eight (8) inches of base course
- Six (6) foot wide asphalt trail, five (5) inches hot mix asphalt over eight (8) inches of base course
- Four (4) foot tall split rail wooden fence delineating the edge of path; set at a minimum 25 feet from centerline of adjacent tracks
- 3.5-foot landscape buffers on either side of the path.

TYPICAL SECTION C

Typical Section C is located in downtown Meridian and consists of the following:

- 25 -foot right of way within the existing UPRR Property
- 12-foot wide multi-use path with a nine (9) foot mixed use or plaza area; five (5) inches of concrete over eight (8) inches of base course
- Four (4) foot tall split rail wooden fence delineating the edge of path; set at a minimum 25 feet from centerline of adjacent tracks
- Two (2) foot wide landscape buffers on either side of the path.

TYPICAL SECTION D

Typical Section D is located in both Nampa and Boise where we bring the path adjacent to existing roadways and consists of the following:

- Mix of right of way, partially constructed within the existing roadway right of way, partially within UPRR
- 12-foot wide multi-use path with a one-foot colored stamped concrete buffer, five (5) inches of concrete over eight (8) inches of base course
- Proposed Curb and gutter, assume replacement of existing curb and gutter if present
- Patch back of asphalt roadway

TYPICAL SECTION E

Typical Section E is located in limited areas where we are either bridging a road or rail or are having the path pass under a roadway or rail bridge:

- 25-foot right of way within the existing UPRR Property
- 12-foot wide multi-use path, five (5) inches of concrete over eight (8) inches of base course
- MSE wall retaining the Path (assume on average eight (8) feet tall), with a four (4) foot tall metal railing on top of the wall
- 6.5-foot landscape buffer on opposite side of the path from the MSE Wall.

TYPICAL SECTION F

Typical Section F is our bridge section that tries to build in all aspects of bridge installation, these items include

- 12-foot wide concrete decking
- Prefabricated steel truss structure
- Metal handrails
- Abutments
- Foundations

CROSSING TREATMENT DEVELOPMENT

One of the most critical and often mis-designed areas are where multi-use paths cross roadways. Alta has taken a similar approach to developing crossing treatments as we did with the path sections and developed typical enhancements that would apply to the various treatment and arranged them from the least to most costly to install.

CROSSING TYPE 1 - CROSS WALK AND SIGNS

A Type 1 Crossing is the simplest form of a pedestrian crossing and typically used at low volume, low speed roadways that cross no more than 3 lanes of traffic. There are three (3) conditions where a Type 1 Crossing can be considered.

- A crosswalk only with high visibility
- A crosswalk with warning signage and yield markings
- A stop-controlled crossing

Typical items that would be included at a Type 1 Crossing include:

- A painted crosswalk
- Yield triangle pavement markings or stop line pavement markings
- Pedestrian crossing signs with supplemental arrow pointing to direction of crossing
- Additional signage needed if yield triangle pavement markings are used include a "Yield here to pedestrians"

CROSSING TYPE 2 - ACTIVE WARNING BEACONS

A Type 2 Crossing is the next low-cost option of a pedestrian crossing and typically used on collectors and arterial streets with a speed limit of 45 mph or less and crossing no more than 3 lanes or a 4-lane road with a pedestrian refuge island. Typical items that would be included at a Type 2 Crossing include:

- A painted crosswalk
- Yield triangle pavement markings
- Pedestrian crossing signs with supplemental arrow pointing to direction of crossing
- Rectangular Rapid Flashing Beacons (RRFB) assembled on the sign pole. RRFB's are required on both sides of the roadway and in pedestrian refuge crossings. RRFB's can be solar powered or powered through traditional means.
- Pedestrian push buttons to activate the RRFB. Pedestrian push buttons are required on both sides of the roadway and in pedestrian refuge crossings. Pedestrian push buttons can be wireless or wired traditionally.
- "Yield here to pedestrians" sign placed at the yield markings to alert drivers where to wait during the yield condition

CROSSING TYPE 3 - PEDESTRIAN HYBRID BEACON

A Type 3 Crossing is a higher cost option of a pedestrian crossing and typically used on arterial streets with a speed limit of 45 mph or less and crossing anywhere from 2 to 6 lanes of traffic, with or without pedestrian refuge islands. A Type 3 crossing remains dark during inactivity and begins the signal operation once a user presses the pedestrian push button to activate the crossing. Please note that Type 3 Crossings should not be used in conjunction with railroad crossings due to the similarity of flashing signals. Typical items that would be included at a Type 3 Crossing include:

- A painted crosswalk
- Stop line pavement markings
- Pedestrian crossing signs with supplemental arrow pointing to direction of crossing
- Traffic signal pole and mast arm on both sides of the street with pedestrian hybrid beacons centered over each lane and required signage on the mast arm
- A traffic signal controller and controller cabinet with a connection to a power source
- Pedestrian push buttons to activate the pedestrian hybrid beacons. Pedestrian push buttons are required on both sides of the roadway and in pedestrian refuge crossings.
- "Stop here to pedestrians" sign placed at the yield markings to alert drivers where to wait during the yield condition

CROSSING TYPE 4 - FULL TRAFFIC SIGNAL

A Type 4 Crossing is a full traffic signal. A Type 4 Crossing would require a signal warrant as laid out in Chapter 4 of the MUTCD. Typical items that would be included at a Type 4 Crossing include:

- Painted crosswalks
- Stop line pavement markings
- Traffic signal pole and mast arm for all approaches
- A traffic signal controller and controller cabinet with a connection to a power source
- Pedestrian push buttons and pedestrian signal heads
- Signal detection for vehicles and bicycles

Crossing Treatment Selection Guidance

The table below shows Alta's process of vetting a design against the existing conditions and will be how Alta determines appropriate crossing treatments per intersection. The table is broken down by Crossing Type and street type with speed and number of lanes to cross. If the crossing falls under Engineering Judgment (EJ), Alta will analyze the crossing and propose the safest possible solution for that crossing. Crossings at roadways with speeds above 45 mph will always be grade separated.

PEDESTRIAN CROSSING CONTEXTUAL GUIDANCE	Local Streets $15-25 \mathrm{mph}$		Collector Streets 25-30 mph			Arterial Streets 30-45 mph							
FACILITY TYPE	2 lane	3 lane	2 lane	2 lane with median refuge	3 lane	2 lane	2 lane with median refuge	3 lane	4 lane	4 lane with median refuge	5 lane	6 lane	6 lane with median refuge
Crosswalk Only (high visibility)	\checkmark	\checkmark	E	EJ	X	E	EJ	X	X	x	X	X	X
1 Crosswalk with warning signage and yield lines	E	\checkmark	\checkmark	\checkmark	\checkmark	E	EJ	EJ	X	x	X	X	X
Stop Sign Controlled	\checkmark	\checkmark	E	EJ	E	E	E	EJ	x	X	x	x	X
$2 \begin{aligned} & \text { Active Warning Beacon } \\ & (\text { RRFB })\end{aligned}$	X	E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	X	X	X
3 Hybrid Beacon*	X	X	E	EJ	E	E	\checkmark						
4 Full Traffic Signal	X	X	EJ	EJ	E	E	EJ	EJ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5 Grade separation	X	X	E	E	E	X	EJ	EJ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

LEGEND	
Most Desirable	\checkmark
Engineering Judgement	$E J$
Not Recommended	X

*Hybrid beacons should not be used in conjunction with railroad crossing signals due to the similarity in lens and flash pattern. Use full traffic signal instead. Instances where hybrid beacons would be appropriate are when the railroad crossing is grade separated and the trail crossing is at street grade (e.g. Garity Blvd and Sugar St.).

RIGHT OF WAY

Right of Way acquisitions is required for this corridor with the majority required from the UPRR. This is the largest risk item for Rails with Trails success and providing the backbone throughout the Treasure Valley.

Alta has not been in contact with UPRR to discuss the cost to acquire the needed right of way due to historical precedents where the railroad company does not typically relinquish their property for trail projects. However, COMPASS prepared a study looking at ROW costs per acre along the corridor utilizing an "Across the Fence" approach that uses the market value of the property adjacent to the railroad.

Using this approach, Alta was able to apply a cost per Acre to the corridor depending on the location as shown below:

LOCATION	Unincorporated Ada County	Unincorporated Canyon County	City of Boise	City of Meridian	City of Nampa
Cost/ Acre	$\mathbf{\$ 8 4 , 9 0 0}$	$\mathbf{\$ 5 0 , 4 0 0}$	$\mathbf{\$ 8 5 , 9 0 0}$	$\mathbf{\$ 7 5 , 0 0 0}$	$\mathbf{\$ 5 0 , 4 0 0}$

UTILITIES

The utility work for this project was focused on crossing of irrigation canals and avoiding overhead transmission and service power lines. Alta did not consider the details of the various utilities that might need to be relocated or adjust as part of the crossing updates, but carried a 5 percent contingency at all the crossing treatment locations and for the are Typical Section 4.

ENVIRONMENTAL

The scope of this study does not include environmental analysis; instead, Alta used the aerial information and site visit to avoid potential wetland areas along the corridor if practical. Further environmental studies are needed as the project advances as rail corridors can have other hazardous materials in the right of way as well as higher concentrations of hydrocarbons.

GEOTECHNICAL

This study also does not include any geotechnical studies in the corridor and will need to be performed at a later date. Several City staff indicated that there are known areas of poor soils in the corridor that may necessitate a thicker path section. At this time, our assumption of a City of Boise Standard thickness of five (5)-inches of pavement, concrete or asphalt, over eight (8) inches of aggregate base course is sufficient.

ALIGNMENT AND CROSSING SUMMARY

Alta's approach to selecting the appropriate route of the Rails with Trail used the following methodology:

- Terminate at City of Nampa Stoddard Trail
- Connect to Downtown Meridian
- Connect to Boise River Greenbelt Trail
- Connect to Boise Depot
- Terminate at future Lake Hazel Road Extension

The pathway established generally follows the UPRR corridor where industrial leads and spurs access the tracks. In the areas where the path is within the railroad right of way, the path is on the side that has no industrial tracks or fewer conflicts. This assumption was made within the scope of the study to aid in developing costs and if the trail needs to flip sides of the tracks, the planning level costs will be similar.

NAMPA SECTION

The Nampa section of the project connects to $2^{\text {nd }}$ Street and the Stoddard Trail, crossing the existing tracks to the north with a long bridge over the yard. The trail is then located along the west side of Sugar avenue attached to the curb and gutter to $11^{\text {th }}$ Ave where the trail is located within the UPRR ROW to just north of I-84 where the trail follows the canal maintenance trail to $11^{\text {th }}$ Ave and the connection to the planned trail just north of the tracks.

The City of Nampa is planning and designing a trail connection on the north side of the tracks from $11^{\text {th }}$ Ave to Idaho Center boulevard that the trail will use and is not part of this studies costs. From Idaho Center to McDermott Road, the trail is on the north side of the tracks within the UPRR ROW and has the extra asphalt side path. This segment also has the future Highway 16 expansion project that will need to account for the path in their design to all the trail to be placed adjacent to the rail and pass under the future highway overpass bridges.

The study assumes the following segment and typical sections to accomplish the path above. Refer to the Nampa Section of the alignment file for locations.

Segment	Length (LF)	Typical Section	Segment	Length (LF)	Typical Section
NAMPA_1	1272	TYPE D	NAMPA_13	1908	TYPE D
NAMPA_2	560	TYPE A	NAMPA_14	320	TYPE D
NAMPA_3	728	TYPE F	NAMPA_15	1577	TYPE A
NAMPA_4	164	TYPE E	NAMPA_16	269	TYPE E
NAMPA_5	506	TYPE D	NAMPA_17	380	TYPE A
NAMPA_6	210	TYPE D	NAMPA_18	118	TYPE F
NAMPA_7	168	TYPE D	NAMPA_19	6193	TYPE A
NAMPA_8	349	TYPE D	NAMPA_20	4661	TYPE B
NAMPA_9	534	TYPE D	NAMPA_21	46	TYPE F
NAMPA_10	84	TYPE D	NAMPA_22	418	TYPE B
NAMPA_11	150	TYPE D	NAMPA_23	5218	TYPE A
NAMPA_12	3500	TYPE D	TOTAL LENGTH	5.56	MILES

This study assumed there are three potential trail head locations

Location	Number of spaces	Surfacing
2nd $^{\text {nd }}$ Street	12	Paved
Sugar Street	8	Paved
Idaho Center	12	Paved

The following street crossing treatments are in the Nampa segment

Location	Crossing Type
Garrity Street	Type 3
Sugar Street	Type 2
$11^{\text {th }}$ Ave NE	Type 2
$11^{\text {th }}$ Ave NE	Type 1
N Idaho Center	Type 4
Star Road	Type 2

MERIDIAN SECTION

The multi-use path continues from McDermott Rd on the north side of the tracks to just east of $W 8^{\text {th }}$ street where it connects to a path currently being designed by the City of Meridian. This first segment consists of the multi-use path with side asphalt/gravel surface (the costing assumes asphalt but can be designed as gravel/crusher fines as the design and local user preferences are better known). The city designed path continues to NW $3^{\text {rd }}$ St where the combines concrete and asphalt path picks up and continues to North Meridian Road, and the downtown core.

In the downtown area, the path introduces the mixed-use amenity zone to allow for spill out from adjacent properties and places to gather. This mixed-use zone runs from N Meridian Rd to NE $6^{\text {th }}$ St on the north side of the tracks where the path transitions back to the concrete path with asphalt side path and continues on the north side of the tracks to Locust Grove Rd.

At the Locust Grove crossing the path will transition to the south side of the tracks all the way to Cloverdale Road, with the crossing of Eagle road being grade separated. We assumed a path over road design at this time, but an underpass is also viable and needs to be studied further.

The study assumes these following segments. Refer to the Meridian Section of the alignment file for locations

Segment	Length (LF)	TYpical Section	Segment	Length $($ LF $)$	TYpical Section
MERIDIAN_1	2211	TYPE B	MERIDIAN_15	2689	TYPE B
MERIDIAN_2	71	TYPE F	MERIDIAN_16	1044	TYPE B
MERIDIAN_3	2962	TYPE B	MERIDIAN_17	446	TYPE C
MERIDIAN_4	418	TYPE B	MERIDIAN_18	689	TYPE C
MERIDIAN_5	38	TYPE F	MERIDIAN_19	1073	TYPE C
MERIDIAN_6	1353	TYPE B	MERIDIAN_20	1333	TYPE B
MERIDIAN_7	38	TYPE F	MERIDIAN_21	30	TYPE F
MERIDIAN_8	269	TYPE E	MERIDIAN_22	1401	TYPE B
MERIDIAN_9	1957	TYPE B	MERIDIAN_23	4740	TYPE B
MERIDIAN_10	73	TYPE F	MERIDIAN_24	354	TYPE E
MERIDIAN_11	1096	TYPE B	MERIDIAN_25	190	TYPE F
MERIDIAN_12	3155	TYPE A	MERIDIAN_26	366	TYPE E
MERIDIAN_13	42	TYPE F	MERIDIAN_27	5271	TYPE A
MERIDIAN_14	2060	TYPE A	TOTAL LENGTH	6.70	MILES

This study assumed there are three potential trail head locations

Location	Number of spaces	Surfacing
10 Mile Road	10	Unpaved
Main Street	10	Paved
N Eagle Road	12	Paved

The following street crossing treatments are in the Meridian segment

Location	Crossing Type
McDermott Road	Type 2
Black Cat Road	Type 4
Ten Mile Road	Type 4
Linder Road	Type 4
Meridian Road	Type 4
Main Street	Type 4
3rd Street	Type 2
Locust Grove Road	Type 4

WEST BOISE SECTION

The path in this section narrows to the 12 ft multi-use path throughout Boise shifting back to the north side of the tracks to avoid several industrial spurs to Five Mile Road, then flips back to the south side to Maple Grove to avoid a spur near Five Mile Rd (this spur may or may not still be active, if deemed inactive in further studies, flipping to north of the tracks beneficial). An access trail to the police station is located in this segment with a signalized pedestrian railroad crossing included.

Between Maple Grove and Benjamin lane, the path flips again to the north side of the tracks then turns and follows Benjamin lane north to Westpark Street then east to Milwaukee Street attached to the back of curb. The path follows this route due to limited right of way along the railroad corridor between Benjamin lane and Milwaukee Street. At Milwaukee, the path crossed the street and uses the existing path on the east side of the road to the south of the railroad crossing where a new detached path connects and runs between the tracks and Franklin Road to Cole Street.

A connection to the Town Square transit center is provided by an attached path on the west side of Cole to just north of I-184 where existing pathways continue north. The primary path continues east on Franklin Road attached to the curb between the tracks and the roadway to Hartman Street and the junction of the Central Boise and Boise Spur sections.

The study assumes these following segments. Refer to the West Boise Section of the alignment file for locations

Segment	Length (LF)	Typical Section	Segment	Length (LF)	Typical Section
W BOISE_1	5432	TYPE A	W BOISE_8	1031	TYPE A
W BOISE_2	4813	TYPE A	W BOISE_9	1150	TYPE D
W BOISE_3	62	TYPE F	W BOISE_10	2013	TYPE D
W BOISE_4	518	TYPE A	W BOISE_11	1242	TYPE D
W BOISE_5	1619	TYPE A	W BOISE_12	221	TYPE D
W BOISE_6	366	TYPE D	W BOISE_13	60	TYPE F
W BOISE_7	1439	TYPE D	W BOISE_14	453	TYPE D
			TOTAL LENGTH	3.87	MILES

This study assumed there are two potential trail head locations: however, these locations will not require additional parking infrastructure.

Location	Number of spaces	Surfacing
Police Station	0	N/A
Boise Town Sq	8	N/A

The following street crossing treatments are in the West Boise segment

Location	Crossing Type
Cloverdale Rd	TYPE 4
Five Mile Rd	TYPE 4
Police Station Access	TYPE 4
Maple Grove Rd	TYPE 4
Benjamin Ln	TYPE 1
N Milwaukee St*	TYPE 1
S Cole Rd*	TYPE 1
Allumbaugh St*	TYPE 1
S Liberty St	TYPE 1
Hartman St	TYPE 1

*Crossings are already signalized, only adding additional signage

BOISE SPUR SECTION

The Boise Spur provides the needed connection between the rail-with trail trunk and the Boise River Greenbelt. This section is predicated on the assumption that this entire right of way will be acquired and the existing rail line will be removed and replaced with the standard 12 -foot-wide path section. The new trail will run from Hartman Street to Irving Street and an attached trail will then connect to the intersection at Orchard where the path will use the existing sidewalk to greenbelt trail access just north of Irving Street.

The study assumes these following segments. Refer to the Boise Spur Section of the alignment file for locations

Segment	Length (LF)	Typical Section
SPUR BOISE_1	1706	TYPE A
SPUR BOISE_2	254	TYPE A
SPUR BOISE_3	1677	TYPE A
SPUR BOISE_4	1680	TYPE A
SPUR BOISE_5	136	TYPE D
TOTAL LENGTH	$\mathbf{1 . 0 3}$	MILES

The following street crossing treatments are in the Boise Spur segment

Location	Crossing Type
N Curtis Road	TYPE 4
Morris Hills Ln	TYPE 1
Emerald St	TYPE 2
N Orchard St*	TYPE 1

*Crossings are already signalized, only adding additional signage

CENTRAL BOISE SECTION

The Central Boise Section connect to the Boise Spur (Greenbelt connection) and the Boise West Section. The pathway is located on the north side of the tracks between Hartman Street and Curtis Road, then transitions to the south of the tracks to Orchard Street where the path transitions to an attached path to reconstructed curb line on the northside of Alpine Street. This configuration continues to Peasley Street with an access trail connecting the pathway to the parking at Morris Hill Park.

At Peasley Street the pathway crosses the tracks and connects to the west side of the Boise Depot at Eastover Terrace with a standard multi-use path. The connection at Eastover Terrace provides linkages to the existing pathways recently added to Capital Boulevard that provides access to Boise State University and downtown Boise. On the east side of the Depot a new pathway is created and parallels the tracks to the east and a new overpass of Capital Boulevard adjacent to the existing railroad overpass. This path continues east and terminates at Federal Way just south of Dover Lane where a mid-block Crossing connects to the existing multi-use path on Federal Way.

The study assumes these following segments. Refer to the Central Boise Section of the alignment file for locations

Segment	Length (LF)	Typical Section	Segment	Length (LF)	Typical Section
C BOISE_1	1342	TYPE B	C BOISE_9	1319	TYPE D
C BOISE_2	1300	TYPE F	C BOISE_10	62	TYPE F
C BOISE_3	1272	TYPE B	C BOISE_11	731	TYPE D
C BOISE_4	1269	TYPE B	C BOISE_12	846	TYPE A
C BOISE_5	1251	TYPE F	C BOISE_13	268	TYPE A
C BOISE_6	1234	TYPE B	C BOISE_14	143	TYPE F
C BOISE_7	619	TYPE F	C BOISE_15	668	TYPE A
C BOISE_8	135	TYPE E	C BOISE_16	204	TYPE D
			TOTAL LENGTH	$\mathbf{2 . 4}$	MILES

This study assumed there are two potential trail head locations: however, these locations will not require additional parking infrastructure.

Location	Number of spaces	Surfacing
Roosevelt St	0	N/A
Boise Station	0	N/A

The following street crossing treatments are in the Central Boise segment

Location	Crossing Type
S Curtis Rd	TYPE 4
S Phillippi St	TYPE 1
S Orchard St	TYPE 3
W Garden St	TYPE 1
S Roosevelt St	TYPE 2
S Latah St	TYPE 2
Peasley St	TYPE 2
S Federal Way	TYPE 3

SOUTH BOISE SECTION

The multi-use path for much of the south section of Boise will use the existing South Federal Way path and infrastructure from where the new overpass at Capital Boulevard all the way south to the intersection of Yamhill road. At this intersection, the path crosses Federal Way and rejoins the railroad and runs south along the east side of the tracks all the way to the future Lake Hazel roadway extension. The city of Boise has already purchased the right of way for the entire track section south of Gowen Road. Additionally, there are plans to widen Gowen Road and this future project will provide a bench for the pathway at this underpass.

The study assumes these following segments. Refer to South Boise Section of the alignment file for locations

Segment	Length (LF)	Typical Section	Segment	Length (LF)	Typical Section
S BOISE_1	1949	TYPE A	S BOISE_5	3409	TYPE A
S BOISE_2	255	TYPE E	S BOISE_6	60	TYPE F
S BOISE_3	939	TYPE A	S BOISE_7	7282	TYPE A
S BOISE_4*	75	TYPE A	TOTAL LENGTH	1.34	MILES

* bench under overpass provided by future Gowen Rd Project

This study assumed there are two potential trail head locations

Location	Number of spaces	Surfacing
S Eisenman Rd	10	Paved
Lake Hazel Extension	12	Paved

The following street crossing treatments are in the Central Boise segment

Location	Crossing Type
S Federal Way	TYPE 1

PROBABLE COST SUMMARY

CAPITALIMPROVEMENTS

Alta developed per foot quantities and unit costs typical for the Southwest Idaho Region. Quantities and costs were developed for as much as possible for each path segment and used percentages for items that are not quantifiable at this stage (traffic control, drainage and utilities, etc.) and a general contingency is applied.

Alta also used the same approach to each of the crossing treatments and quantify as much as possible and apply percentages and contingencies for items that are not quantifiable at this time.

Alta used 2019 dollars and were reviewed with the Ada County Highway District to ensure values are appropriate for this size and scale of project. The costs in the summary spreadsheet can be adjusted as the project moves forward.

To understand the "All \ln " costs, the Capital Costs also assumed a fixed design/ engineering fee of 6% and a fee of 8% for construction management services. These are applied to the total construction costs to get to the final capital costs and represent what Alta has seen in the past for projects of similar complexities and scale.

The Following Table summarizes both the capital costs, and right of way costs by segments listed above. Details on how each cost is generated can be found in Appendix C.

CAPITAL COSTS	MILES	COST
NAMPA SECTION	5.56	\$12,580,744
MERIDIAN SECTION	6.70	\$14,139,933
WEST BOISE SECTION	3.87	\$7,390,153
SPUR BOISE SECTION	1.03	\$1,673,064
CENTRAL BOISE SECTION	2.40	\$6,044,633
SOUTH BOISE SECTION	2.65	\$3,561,337
SUBTOTAL	22.20	\$45,389,864
ROW COSTS	ACRES	COST
NAMPA SECTION	14.88	\$749,952
MERIDIAN SECTION	20.44	\$1,562,898
WEST BOISE SECTION	10.16	\$872,744
SPUR BOISE SECTION	3.12	\$268,008
CENTRAL BOISE SECTION	5.85	\$502,515
SOUTH BOISE SECTION ${ }^{+}$	8.04	\$155,479
SUBTOTAL	62.49	\$4,111,596
TOTAL COST		\$49,501,460

+ Partial ROW already Acquired

ATTACHMENTS:

ALIGNMENTS

COST SUMMARY SPREADSHEET

APPENDIX A - TYPICAL SECTIONS

APPENDIX B - CROSSING TREATMENTS

TYPE 1: CROSSWALK ONLY

TYPE 2: ACTIVE WARNING BEACON

TYPE 3: HYBRDI BEACON*

TYPE 4: FULL TRAFFIC SIGNAL

TYPE 5: GRADE SEPARATED

CROSSING TREATMENT SELECTION

GUIDANCE

COMPASS
2019.09.04 | COMPASS RAILS WITH TRAILS DEVELOPMENT COST STUDY

APPENDIX C - COST SUMMARY TABLES

SUMMARY OF OPINION OF PROBABLE COSTS	울		
CAPITAL COSTS	MILES		COST
NAMPA SECTION	5.56	\$	12,580,744
MERIDIAN SECTION	6.70	\$	14,139,933
WEST BOISE SECTION	3.87	\$	7,390,153
SPUR BOISE SECTION	1.03	\$	1,673,064
CENTRAL BOISE SECTION	2.40	\$	6,044,633
SOUTH BOISE SECTION	2.65	\$	3,561,337
Miles	2.20	\$	45,389,864
ROW COSTS	ACRES		COST
NAMPA SECTION	14.88	\$	749,952
MERIDIAN SECTION	20.44	\$	1,562,898
WEST BOISE SECTION	10.16	\$	872,744
SPUR BOISE SECTION	3.12	\$	268,008
CENTRAL BOISE SECTION	5.85	\$	502,515
SOUTH BOISE SECTION ${ }^{+}$	8.04	\$	155,479
* Row Al Ready AcQuired	62.49	\$	4,111,596
TOTAL COST	- \$ 49,501,460		

TYPICAL SECTION COST BREAKDOWN TRAIL WIDTH (FT) TOPSOIL THICKNESS (IN)			TYPICAL SECTION A 12' PATH WITH 6.5' SHOULDERS		typlcal section b 12' PATH WITH 6' RUNNING TRAAL		TYPICAL SECTION C 12' PATH WITH 9' MIXED USE SPACE		TYPICAL SECTION D 12' PATH WITH 1' SHOULDER		TYPICAL SECTION E 12' PATH ON MSE WALL		TYPICAL SECTION F 12' PATH ON BRIDGE	
			DIST. WIDTH	35	DIST. WIDTH	25	DIST. WIDTH	12						
			SURF WIITH	12	SURF WIDTH	18	SURF WIDTH	21	SURF WIDTH	21	SURF WIDTH	12	SURF WIDTH	12
			SURF TYPE	CONCRETE										
CONTRACTITEM	UNIT	UNIT COST	Q/LF	\$/LF										
Clearing and grubbing	SF	\$0.15	35	\$5.25	35	\$5.25	35	\$5.25	14	\$2.10	25	\$3.75	15	\$2.25
Removal of excavation/Embankment material	Cr	\$40.00	0.35	\$14.00	0.35	\$14.00	0.35	\$14.00	0.35	\$14.00	0.35	\$14.00	0.35	\$14.00
STructure excavation	Cr	\$25.00		\$0.00		\$0.00		\$0.00		\$0.00		\$75.00		50.00
STRUCTURE BACKFILL	Cr	\$50.00		\$0.00		\$0.00		50.00		50.00	3	\$150.00		\$0.00
TOPSOIL	Cr	\$10.00	1.93	\$19.26	1.93	\$19.26	1.93	\$19.26		\$0.00	1.93	\$99.26		50.00
EROSION CONTROL	LF	\$2.00		\$2.00		\$2.00		\$2.00	2	\$4.00		\$2.00		
SEEDING	AC	\$1,000.00	0.00053	50.53	0.000039	50.39	0.00032	\$0.32		\$0.00	0.00030	50.30		\$0.00
MULCHING	AC	5900.00	0.00053	50.48	0.00039	50.35	0.00032	50.29		50.00	0.00030	50.27		
SOIL RETENTION BLANKET	SF	\$2.50		\$0.00		\$0.00		50.00		\$0.00		\$5.00		\$0.00
CRUSHER FINES TRALI (6 INCH)	SF	\$1.50		\$0.00		50.00		50.00		50.00		50.00		
AGGREGATE BASE COURSE (CLASS 6) (8" SECTION)	Cr	\$45.00	0.30	\$13.33	0.44	\$20.00	0.52	\$23.33	0.52	\$23.33	0.30	\$13.33		\$0.00
HOT MIX ASPHALT (6" SECTION)	SF	\$5.00		\$0.00		\$30.00		\$0.00		\$10.00		50.00		
ROCK RETAINING WALL ($1^{\prime}-4$ ' EXPOSED)	SF	\$35.00		\$0.00		\$0.00		50.00		\$0.00		\$0.00		\$0.00
ROCK RETAINING WALL (4--8' EXPOSED)	SF	\$45.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		
MSE RETAIING WALL	SF	\$60.00		\$0.00		\$0.00		\$0.00		\$0.00	8	\$480.00		\$0.00
RALING -STEEL	LF	\$110.00		\$0.00		\$0.00		\$0.00		\$0.00		\$110.00		\$0.00
CONCRETE CLASS D	Cr	\$900.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		50.00
REINFORCING STEEL (EPOXY COATED)	LF	\$2.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
FOUR (4) FOOT TALL SPLTT RAAL FENCE	LF	\$20.00		\$20.00		\$20.00		\$20.00		\$20.00		\$0.00		50.00
CONCRETE BIKEWAY (8 INCH)	SF	58.00	12	\$96.00	12	596.00	21	\$168.00	13	\$104.00	12	\$96.00	12	596.00
Concrete curb and gutier	LF	\$35.00		50.00		\$0.00		50.00		\$35.00		50.00		50.00
LGGting	EA	\$1,500.00		\$0.00		50.00	0.010	\$15.00	0.0 .020	\$30.00		\$0.00		50.00
PEDESTRIAN BRIDGE	${ }^{\text {LF }}$	\$3,000.00		\$0.00		\$0.00		\$0.00		50.00		50.00		\$3,000.00
SUBTOTAL OF BID ITEMS				\$170.85		\$207.25		\$267.45		\$242.43		5968.91		\$3,112.25
TRAFFIC CONTROL	15	10\%								\$24.24				
dRAINAGE AND UTILTIES	15	5\%								\$12.12				
UPGRADED AMENTITES	$\stackrel{5}{5}$	5\%				\$10.36		\$13.37		\$12.12				
Miscellaneous items \& Contingencies	LS	10\%		\$17.08		\$20.73		\$26.75		\$24.24		\$96.89		\$311.23
TOTAL WTH CONTINGIENCIES			Rounded	\$187.93		\$238,34		\$307.57		\$315.16		\$1,065.80		\$3,423.48
			\$190.00	Rounded	\$240.00	Rounded	\$310.00	Rounded	\$320.00	Rounded	\$1,070.00	Rounded	\$3,430.00	

CROSSING TYPE COST BREAKDOWN			TYPE 1 SIGNED CROSSWALK		TYPE 2 ACTIVE WARNING BEACON (RRFB)		TYPE 3 hYbrid beacon		TYPE 4 TRAFFIC SIGNAL	
CONTRACT ITEM	UNIT	UNIT COST	QUANTITY	COST	QUANTITY	COST	QUANTITY	COST	QUANTITY	COST
DRILLED CAISSON (12 INCH)	LF	\$200.00		\$0.00		\$0.00		\$0.00		\$0.00
DRILLED CAISSON (18 INCH)	LF	\$250.00		\$0.00	20	\$5,000.00		\$0.00		\$0.00
DRILLED CAISSON (24 INCH)	LF	\$300.00		\$0.00		\$0.00		\$0.00		\$0.00
DRILLED CAISSON (36 INCH)	LF	\$700.00		\$0.00		\$0.00	30	\$21,000.00	30	\$21,000.00
CONCRETE SIDEWALK (4 INCH)	SY	\$50.00		\$0.00		\$0.00		\$0.00		\$0.00
CONCRETE CURB RAMP	EA	\$2,500.00	2	\$5,000.00	2	\$5,000.00	2	\$5,000.00	2	\$5,000.00
PEDESTRIAN REFUGE ISLAND	EA	\$7,500.00	1	\$7,500.00	1	\$7,500.00	1	\$7,500.00		\$0.00
WIRING	LS	\$15,000.00		\$0.00		\$0.00	1	\$15,000.00	1	\$15,000.00
2 INCH CONDUIT (TRENCHED)	LF	\$10.00		\$0.00		\$0.00		\$0.00	100	\$1,000.00
2 INCH CONDUIT (BORED)	LF	\$12.00		\$0.00		\$0.00		\$0.00	300	\$3,600.00
3 INCH CONDUIT (TRENCHED)	LF	\$22.00		\$0.00		\$0.00	100	\$2,200.00	200	\$4,400.00
3 INCH CONDUIT (BORED)	LF	\$25.00		\$0.00		\$0.00	150	\$3,750.00	600	\$15,000.00
TYPE ONE PULL BOX	EA	\$750.00		\$0.00		\$0.00		\$0.00		\$0.00
TYPE TWO PULL BOX	EA	\$850.00		\$0.00		\$0.00	2	\$1,700.00	4	\$3,400.00
TYPE THREE PULL BOX	EA	\$900.00		\$0.00		\$0.00	1	\$900.00	1	\$900.00
LUMINAIRE (LED)	EA	\$1,000.00		\$0.00		\$0.00	2	\$2,000.00	2	\$2,000.00
SIGN PANEL (CLASS I)	SF	\$21.00	12	\$252.00	12	\$252.00		\$0.00		\$0.00
SIGN PANEL (CLASS II)	SF	\$25.00	36	\$900.00	36	\$900.00	45	\$1,125.00	50	\$1,250.00
STEELSIGN POST (2×2 TUBING)	LF	\$20.00	4	\$80.00		\$0.00	48	\$960.00		\$0.00
PEDESTRIAN SIGNAL FACE (16) (COUNTDOWN)	EA	\$800.00		\$0.00		\$0.00	2	\$1,600.00	4	\$3,200.00
TRAFFIC SIGNAL FACE (12-12-12)	EA	\$950.00		\$0.00		\$0.00	6	\$5,700.00	6	\$5,700.00
TRAFFIC SIINAL FACE (12-12-12-12)	EA	\$1,250.00		\$0.00		\$0.00		\$0.00	4	\$5,000.00
TRAFFIC SIGNAL CONTROLLER CABINET	EA	\$20,000.00		\$0.00		\$0.00		\$0.00	1	\$20,000.00
PEDESTRIAN PUSH BUTTON POST ASSEMBLY	EA	\$2,500.00		\$0.00		\$0.00	2	\$5,000.00	4	\$10,000.00
FIRE PREEMPTION UNIT AND TIMER	EA	\$4,000.00		\$0.00		\$0.00		\$0.00	1	\$4,000.00
INTERSECTION DETECTION SYSTEM (CAMERA)	EA	\$10,000.00		\$0.00		\$0.00		\$0.00	2	\$20,000.00
RECTANGULAR FLASHING BEACON	EA	\$5,000.00		\$0.00	4	\$20,000.00		\$0.00		\$0.00
TRAFFIC SIGNAL-LIGHT POLE STEEL	EA	\$12,000.00		\$0.00		\$0.00		\$0.00		\$0.00
TRAFFIC SIGNAL-LIGHT POLE STEEL (1-40 FOOT MAST ARM)	EA	\$15,000.00		\$0.00		\$0.00	2	\$30,000.00	2	\$30,000.00
TRAFFIC SIGNAL PEDESTAL POLE ALUMINUM	EA	\$3,500.00		\$0.00	4	\$14,000.00		\$0.00		\$0.00
TELEMETRY	EA	\$5,000.00		\$0.00		\$0.00	1	\$5,000.00	1	\$5,000.00
UNINTERRUPTED POWER SUPPLY	EA	\$10,000.00		\$0.00		\$0.00	1	\$10,000.00	1	\$10,000.00
CLOSED CIRCUIT TELEVISION	EA	\$5,500.00		\$0.00		\$0.00		\$0.00	1	\$5,500.00
ETHERNET SWITCH	EA	\$5,000.00		\$0.00		\$0.00	1	\$5,000.00	1	\$5,000.00
THERMOPLASTIC PAVEMENT MARKING (XWALK-STOPLINE)	SF	\$30.00	200	\$6,000.00	200	\$6,000.00	200	\$6,000.00	400	\$12,000.00
FURNISH AND INSTALL ELECTICAL SERVICE	LS	\$25,000.00		\$0.00		\$0.00	1	\$25,000.00	1	\$25,000.00
TRAIL CROSSING BRIDGE	EA	\$25,000.00		\$0.00		\$0.00		\$0.00		\$0.00
SUBTOTAL OF BID ITEMS				\$19,732.00		\$58,652.00		\$154,435.00		\$232,950.00
TRAFFIC CONTROL	LS	10\%		\$1,973.20		\$5,865.20		\$15,443.50		\$23,295.00
DRAINAGE AND UTILITIES	LS	5\%		\$986.60		\$2,932.60		\$7,721.75		\$11,647.50
MISCELLANEOUS ITEMS \& CONTINGENCIES	LS	10\%		\$1,973.20		\$5,865.20		\$15,443.50		\$23,295.00
TOTAL WITH CONTINGIENCIES				\$24,665.00		\$73,315.00		\$193,043.75		\$291,187.50
			unded	\$24,670.00	unded	\$73,320.00	unded	\$193,050.00	unded	\$291,190.00

NAMPA SECTION - OPINION OF PROBABLE COST

MERIDIAN SECTION - OPINION OF PROBABLE COST						
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	COST/ LF	$\begin{gathered} \text { COST/ } \\ \text { SEGMENT } \end{gathered}$	
MERIDIAN_1	2211	LF	TYPE B	\$ 240	\$	530,640
MERIDIAN_2	71	LF	TYPE F	\$ 3,430	\$	243,530
MERIDIAN_3	2962	LF	TYPE B	\$ 240	\$	710,880
MERIDIAN_4	418	LF	TYPE B	\$ 240	\$	100,320
MERIDIAN_5	38	LF	TYPE F	\$ 3,430	\$	130,340
MERIDIAN_6	1353	LF	TYPE B	\$ 240	\$	324,720
MERIDIAN_7	38	LF	TYPE F	\$ 3,430	\$	130,340
MERIDIAN_8	269	LF	TYPE E	\$ 1,070	\$	287,830
MERIDIAN_9	1957	LF	TYPE B	\$ 240	\$	469,680
MERIDIAN_10	73	LF	TYPE F	\$ 3,430	\$	250,390
MERIDIAN_11	1096	LF	TYPE B	\$ 240	\$	263,040
MERIDIAN_12	3155	LF	TYPE A	\$ 190	\$	599,450
MERIDIAN_13	42	LF	TYPE F	\$ 3,430	\$	144,060
MERIDIAN_14	2060	LF	TYPE A	\$ 190	\$	391,400
MERIDIAN_15	2689	LF	TYPE B	\$ 240	\$	645,360
MERIDIAN_16	1044	LF	TYPE B	\$ 240	\$	250,560
MERIDIAN_17	446	LF	TYPE C	\$ 310	\$	138,260
MERIDIAN_18	689	LF	TYPE C	\$ 310	\$	213,590
MERIDIAN_19	1073	LF	TYPE C	\$ 310	\$	332,630
MERIDIAN_20	1333	LF	TYPE B	\$ 240	\$	319,920
MERIDIAN_21	30	LF	TYPE F	\$ 3,430	\$	102,900
MERIDIAN_22	1401	LF	TYPE B	\$ 240	\$	336,240
MERIDIAN_23	4740	LF	TYPE B	\$ 240	\$	1,137,600
MERIDIAN_24	354	LF	TYPE E	\$ 1,070	\$	378,780
MERIDIAN_25	190	LF	TYPE F	\$ 3,430	\$	651,700
MERIDIAN_26	366	LF	TYPE E	\$ 1,070	\$	391,620
MERIDIAN_27	5271	LF	TYPE A	\$ 190	\$	1,001,490
Miles 6.70			SEGMENTS SUBTOTAL		\$ 10,477,270	
STREET CROSSING	QUANTITY	UNITS	CROSSING TYPE	COST/ CROSSING	COST	
McDermott Rd	1	EA	TYPE 2	\$ 73,320	\$	73,320
Black Cat Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
Ten Mile Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
Linder Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
Meridian Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
Main St	1	EA	TYPE 4	\$ 291,190	\$	291,190
3rd St	1	EA	TYPE 2	\$ 73,320	\$	73,320
Locust Grove Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
			CROSSINGS SUBTOTAL		\$	1,893,780
TRAIL HEAD LOCATIONS	QUANTITY	UNITS	CROSSING TYPE	COST/ CROSSING	COST	
10 Mile Rd	10	EA	UNPAVED	\$ 600	\$	6,000
Main St	10	EA	PAVED	\$ 1,200	\$	12,000
N Eagle Rd	12	EA	PAVED	\$ 1,200	\$	14,400
			TRAILHEAD SUBTOTAL		\$	32,400
		CONSTRUCTION COST SUBTOTAL			\$ 12,403,450	
ENGINEERING / DESIGN		LS		6\%	\$	744,207
CONSTRUCTION MANAGEMENT		LS		8\%	\$	992,276
	\$ 2.11 Million/Mile			TOTAL \$		\$ 14,139,933

W BOISE SECTION - OPINION OF PROBABLE COST						
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	COST/ LF	$\begin{gathered} \hline \text { COST/ } \\ \text { SEGMENT } \end{gathered}$	
W BOISE_1	5432	LF	TYPE A	190	+	1,032,080
W BOISE_2	4813	LF	TYPE A	\$ 190	\$	914,470
W BOISE_3	62	LF	TYPE F	\$ 3,430	\$	212,660
W BOISE_4	518	LF	TYPE A	\$ 190	\$	98,420
W BOISE_5	1619	LF	TYPE A	190	\$	307,610
W BOISE_6	366	LF	TYPE D	\$ 320	\$	117,120
W BOISE_7	1439	LF	TYPE D	320	\$	460,480
W BOISE_8	1031	LF	TYPE A	190	\$	195,890
W BOISE_9	1150	LF	TYPE D	320	\$	368,000
W BOISE_10	2013	LF	TYPE D	\$ 320	\$	644,160
W BOISE_11	1242	LF	TYPE D	320	\$	397,440
W BOISE_12	221	LF	TYPE D	\$ 320	\$	70,720
W BOISE_13	60	LF	TYPE F	\$ 3,430	\$	205,800
W BOISE_14	453	LF	TYPE D	\$ 320	\$	144,960
Miles 3.87			SEGMENTS SUBTOTAL		\$	5,169,810
STREET CROSSING	QUANTITY	UNITS	CROSSING TYPE	$\begin{gathered} \text { COST/ } \\ \text { CROSSING } \end{gathered}$	COST	
Cloverdate Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
Five Mile Rd	,	EA	TYPE 4	\$ 291,190	\$	291,190
Police Station Access	1	EA	TYPE 4	\$ 291,190	\$	291,190
Maple Grove Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
Benjamin Ln	1	EA	TYPE 1	\$ 24,670	\$	24,670
N Milwaukee St*	1	EA	TYPE 1	\$ 24,670	\$	24,670
S Cole Rd*	1	EA	TYPE 1	\$ 24,670	\$	24,670
Alumbaugh St*	1	EA	TYPE 1	\$ 24,670	\$	24,670
S Liberty St	1	EA	TYPE 1	\$ 24,670	\$	24,670
Hartman St	1	EA	TYPE 1	\$ 24,670		24,670
			CROSSINGS SUBTOTAL		\$	1,312,780
TRAIL HEAD LOCATIONS	QUANTITY	UNITS	CROSSING TYPE	$\begin{gathered} \text { COST/ } \\ \text { CROSSING } \end{gathered}$	COST	
Police Station	0	EA		\$	\$	
Boise Town Sq	0	EA		\$ -	\$	-
			TRAILHEAD SUBTOTAL		\$	-
		CONSTRUCTION COST SUBTOTAL			\$	6,482,590
ENGINEERING / DESIGN		LS		6\%	\$	388,955
CONSTRUCTION MANAGEMENT		LS		8\%	\$	518,607
	\$ 1.91	Million/Mile		TOTAL	\$	7,390,153

[^1]| SPUR BOISE SECTION - OPINION OF PROBABLE COST | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| SEGMENT | QUANTITY | UNIT | TYPICAL SECTION | cost/ LF | $\begin{gathered} \text { COST/ } \\ \text { SEGMENT } \end{gathered}$ | |
| SPUR BOISE_1 | 1706 | LF | TYPE A | \$ 190 | \$ | 324,140 |
| SPUR BOISE_2 | 254 | LF | TYPE A | \$ 190 | \$ | 48,260 |
| SPUR BOISE_3 | 1677 | LF | TYPE A | \$ 190 | \$ | 318,630 |
| SPUR BOISE_4 | 1680 | LF | TYPE A | \$ 190 | \$ | 319,200 |
| SPUR BOISE_5 | 136 | LF | TYPE D | \$ 320 | \$ | 43,520 |
| Miles 1.03 | | | SEGMENTS SUBTOTAL | | \$ | 1,053,750 |
| STREET CROSSING | QUANTITY | UNITS | CROSSING TYPE | $\begin{gathered} \text { COST/ } \\ \text { CROSSING } \end{gathered}$ | COST | |
| N Curtis Road | 1 | EA | TYPE 4 | \$ 291,190 | \$ | 291,190 |
| Morris Hills Ln | 1 | EA | TYPE 1 | \$ 24,670 | \$ | 24,670 |
| Emerald St | 1 | EA | TYPE 2 | \$ 73,320 | \$ | 73,320 |
| N Orchard St* | 1 | EA | TYPE 1 | 24,670 | \$ | 24,670 |
| | | | CROSSINGS SUBTOTAL | | \$ | 413,850 |
| | | CONSTRUCTION COST SUBTOTAL | | | \$ | 1,467,600 |
| ENGINEERING / DESIGN | | LS | | 6\% | \$ | 88,056 |
| CONSTRUCTION MANAGEMENT | | LS | | 8\% | \$ | 117,408 |
| | \$ 1.62 | Million/Mile | | TOTAL | \$ | 1,673,064 |

* Already Signalized, adding additional signage

C BOISE SECTION - OPINION OF PROBABLE COST						
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	COST/ LF	$\begin{gathered} \hline \text { COST/ } \\ \text { SEGMENT } \end{gathered}$	
C BOISE_1	1342	LF	TYPE A	\$ 190	\$	254,980
C BOISE_2	1300	LF	TYPE A	\$ 190	\$	247,000
C BOISE_3	1272	LF	TYPE A	\$ 190	\$	241,680
C BOISE_4	1269	LF	TYPE D	\$ 320	\$	406,080
C BOISE_5	1251	LF	TYPE D	\$ 320	\$	400,320
C BOISE_6	1234	LF	TYPE D	\$ 320	\$	394,880
C BOISE_7	619	LF	TYPE D	\$ 320	S	198,080
C BOISE_8	135	LF	TYPE F	\$ 3,430	\$	463,050
C BOISE_9	1319	LF	TYPE D	\$ 320	\$	422,080
C BOISE_10	62	LF	TYPE F	\$ 3,430	\$	212,660
C BOISE_11	731	LF	TYPE D	\$ 320	\$	233,920
C BOISE_12	846	LF	TYPE A	\$ 190	\$	160,740
C BOISE_13	268	LF	TYPE A	\$ 190	\$	50,920
C BOISE_14	143	LF	TYPE F	\$ 3,430	\$	490,490
C BOISE_15	668	LF	TYPE A	\$ 170	\$	113,560
C BOISE_16	204	LF	TYPE D	\$ 320	S	65,280
Miles 2.40			SEGMENTS SUBTOTAL		\$	4,355,720
STREET CROSSING	QUANTITY	UNITS	CROSSING TYPE	$\begin{gathered} \text { COST/ } \\ \text { CROSSING } \\ \hline \end{gathered}$	COST	
S Curtis Rd	1	EA	TYPE 4	\$ 291,190	\$	291,190
S Phillippi St	1	EA	TYPE 1	\$ 24,670	\$	24,670
S Orchard St	1	EA	TYPE 3	\$ 193,050	\$	193,050
W Garden St	1	EA	TYPE 1	\$ 24,670	\$	24,670
S Roosevelt St	1	EA	TYPE 2	\$ 73,320	\$	73,320
S Latah St	1	EA	TYPE 2	\$ 73,320	\$	73,320
Peasley St	1	EA	TYPE 2	\$ 73,320	\$	73,320
S Federal Way	1	EA	TYPE 3	\$ 193,050	\$	193,050
			CROSSINGS SUBTOTAL		\$	946,590
TRAIL HEAD LOCATIONS	QUANTITY	UNITS	CROSSING TYPE	$\begin{gathered} \text { COST/ } \\ \text { CROSSING } \end{gathered}$	COST	
Roosevelt St ${ }^{+}$	0	EA		\$	\$	-
			TRAILHEAD SUBTOTAL		\$	-
		CONSTRUCTION COST SUBTOTAL			\$	5,302,310
ENGINEERING / DESIGN		LS		6\%	\$	318,139
CONSTRUCTION MANAGEMENT		LS		8\%	\$	424,185
	\$ 2.52	Million/Mile		TOTAL	-	6,044,633

[^2]| S BOISE SECTION - OPINION OF PROBABLE COST | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| SEGMENT | QUANTITY | UNIT | TYPICAL SECTION | cost/ LF | $\begin{gathered} \hline \text { COST/ } \\ \text { SEGMENT } \end{gathered}$ | |
| S BOISE_1 | 1949 | LF | TYPE A | \$ 190 | SEGMENT | |
| S BOISE_2 | 255 | LF | TYPE E | \$ 1,070 | \$ | 272,850 |
| S BOISE_3 | 939 | LF | TYPE A | \$ 190 | \$ | 178,410 |
| S BOISE_4* | 75 | LF | TYPE A | \$ 190 | \$ | 14,250 |
| S BOISE_5 | 3409 | LF | TYPE A | \$ 190 | \$ | 647,710 |
| S BOISE_6 | 60 | LF | TYPE F | \$ 3,430 | \$ | 205,800 |
| S BOISE_7 | 7282 | LF | TYPE A | \$ 190 | \$ | 1,383,580 |
| Miles 2.65 | | | SEGMENTS SUBTOTAL | | \$ | 3,072,910 |
| STREET CROSSING | QUANTITY | UNITS | CROSSING TYPE | $\begin{gathered} \text { COST/ } \\ \text { CROSSING } \\ \hline \end{gathered}$ | cost | |
| South Federal Way** | 1 | EA | TYPE 1 | 24,670 | \$ | 24,670 |
| | | | CROSSINGS SUBTOTAL | | \$ | 24,670 |
| TRAIL HEAD LOCATIONS | QUANTITY | UNITS | CROSSING TYPE | COST/ CROSSING | COST | |
| S Eiseman Rd | 10 | EA | PAVED | \$ 1,200 | \$ | 12,000 |
| Lake Hazel Extension | 12 | EA | PAVED | \$ 1,200 | \$ | 14,400 |
| | | | TRAILHEAD SUBTOTAL | | \$ | 26,400 |
| | | CONSTRUCTION COST SUBTOTAL | | | \$ | 3,123,980 |
| ENGINEERING / DESIGN | | LS | | 6\% | \$ | 187,439 |
| CONSTRUCTION MANAGEMENT | | LS | | 8\% | \$ | 249,918 |
| | \$ 1.35 | illion/Mile | | TOTAL | \$ | 3,561,337 |

* Bench provided by Cowen Rd Project
**Intersection already signalized, only upgrades signage
ROW AQUISTION - OPINION OF PROBABLE COST

SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	$\begin{gathered} \text { ROW } \\ \text { WIDTH } \end{gathered}$	ACRES	LOCATION	COST/ ACRE	$\begin{gathered} \text { COST/ } \\ \text { SEGMENT } \end{gathered}$
NAMPA 1	1272	LF	TYPE D	15	0.44	NAMPA	\$ 50,400	\$ 22,176.00
NAMPA 2	560	LF	TYPE A	25	0.33	NAMPA	\$ 50,400	\$ 16,632.00
NAMPA 3	728	LF	TYPE F	25	0.42	NAMPA	\$ 50,400	\$ 21,168.00
NAMPA_4	164	LF	TYPE E	25	0.10	NAMPA	\$ 50,400	\$ 5,040.00
NAMPA_5	506	LF	TYPE D	15	0.18	NAMPA	\$ 50,400	\$ 9,072.00
NAMPA 6	210	LF	TYPE D	15	0.08	NAMPA	\$ 50,400	\$ 4,032.00
NAMPA 7	168	LF	TYPED	15	0.06	NAMPA	\$ 50,400	\$ ${ }^{\text {anmank }}$
NAMPA 8	349	LF	TYPE D	15	0.13	NAMPA	\$ 50,400	\$ 6,552.00
NAMPA 9	534	LF	TYPED	15	0.19	NAMPA	\$ 50,400	\$ $9,576.00$
NAMPA 10	84	LF	TYPE D	15	0.03	NAMPA	\$ 50,400	\$ 1,512.00
NAMPA 11	150	LF	TYPE D	15	0.06	NAMPA	\$ 50,400	\$ 3,024.00
NAMPA 12	3500	LF	TYPE D	15	1.21	NAMPA	\$ 50,400	\$ 60,984.00
NAMPA 13	1908	LF	TYPE D	15	0.66	NAMPA	\$ 50,400	\$ 33,264.00
NAMPA 14	320	LF	TYPED	15	0.12	NAMPA	\$ 50,400	\$ 6,048.00
NAMPA 15	1577	LF	TYPE A	25	0.91	NAMPA	\$ 50,400	\$ 45,864.00
NAMPA_16	269	LF	TYPE E	25	0.16	NAMPA	\$ 50,400	\$ 8,064.00
NAMPA 17	380	LF	TYPE A	25	0.22	NAMPA	\$ 50,400	\$ 11,088.00
NAMPA 18	118	LF	TYPE F	25	0.07	NAMPA	\$ 50,400	\$ 3,528.00
NAMPA 19	6193	LF	TYPE A	25	3.56	NAMPA	\$ 50,400	\$ 179,424.00
NAMPA 20	4661	LF	TYPE B	25	2.68	NAMPA	\$ 50,400	\$ 135,072.00
NAMPA 21	46	LF	TYPE F	25	0.03	NAMPA	\$ 50,400	\$ 1,512.00
NAMPA 22	418	LF	TYPE B	25	0.24	NAMPA	\$ 50,400	\$ 12,096.00
NAMPA_23	5218	LF	TYPE A	25	3.00	CANYON COUNTY	\$ 50,400	\$ 151,200.00
					14.88	SEGMENTS SUBTOTAL		\$ 749,952
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	ROW WIDTH	ACRES	LOCATION	COST/ ACRE	COST/ SEGMENT
MERIDIAN_1	2211	LF	TYPE B	25	1.27	ADA COUNTY	\$ 84,900	\$ 107,823.00
MERIDIAN_2	71	LF	TYPE F	25	0.05	ADA COUNTY	\$ 84,900	\$ 4,245.00
MERIDIAN_3	2962	LF	TYPE B	25	1.70	ADA COUNTY	\$ 84,900	\$ 144,330.00
MERIDIAN_4	418	LF	TYPE B	25	0.24	MERIDIAN	\$ 75,000	\$ 18,000.00
MERIDIAN_5	38	LF	TYPE F	25	0.03	MERIDIAN	\$ 75,000	\$ 2,250.00
MERIDIAN_6	1353	LF	TYPE B	25	0.78	MERIDIAN	\$ 75,000	\$ 58,500.00
MERIDIAN_7	38	LF	TYPE F	25	0.03	MERIDIAN	\$ 75,000	\$ 2,250.00
MERIDIAN_8	269	LF	TYPE E	25	0.16	MERIDIAN	\$ 75,000	\$ 12,000.00
MERIDIAN_9	1957	LF	TYPE B	25	1.13	MERIDIAN	\$ 75,000	\$ 84,750.00
MERIDIAN_10	73	LF	TYPE F	25	0.05	MERIDIAN	\$ 75,000	\$ 3,750.00
MERIDIAN_11	1096	LF	TYPE B	25	0.63	MERIDIAN	\$ 75,000	\$ 47,250.00
MERIDIAN_12	3155	LF	TYPE A	25	1.82	MERIDIAN	\$ 75,000	\$ 136,500.00
MERIDIAN_13	42	LF	TYPE F	25	0.03	MERIDIAN	\$ 75,000	\$ 2,250.00
MERIDIAN_14	2060	LF	TYPE A	25	1.19	MERIDIAN	\$ 75,000	\$ 89,250.00
MERIDIAN_15	2689	LF	TYPE B	25	1.55	MERIDIAN	\$ 75,000	\$ 116,250.00
MERIDIAN_16	1044	LF	TYPE B	25	0.60	MERIDIAN	\$ 75,000	\$ 45,000.00
MERIDIAN_17	446	LF	TYPE C	25	0.26	MERIDIAN	\$ 75,000	\$ 19,500.00
MERIDIAN_18	689	LF	TYPE C	25	0.40	MERIDIAN	\$ 75,000	\$ 30,000.00
MERIDIAN_19	1073	LF	TYPE C	25	0.62	MERIDIAN	\$ 75,000	\$ 46,500.00
MERIDIAN_20	1333	LF	TYPE B	25	0.77	MERIDIAN	\$ 75,000	\$ 57,750.00
MERIDIAN_21	30	LF	TYPE F	25	0.02	MERIDIAN	\$ 75,000	\$ 1,500.00
MERIDIAN_22	1401	LF	TYPE B	25	0.81	MERIDIAN	\$ 75,000	\$ 60,750.00
MERIDIAN_23	4740	LF	TYPE B	25	2.73	MERIDIAN	\$ 75,000	\$ 204,750.00
MERIDIAN_24	354	LF	TYPE E	25	0.21	MERIDIAN	\$ 75,000	\$ 15,750.00
MERIDIAN_25	190	LF	TYPE F	25	0.11	MERIDIAN	\$ 75,000	\$ 8,250.00
MERIDIAN_26	366	LF	TYPE E	25	0.22	MERIDIAN	\$ 75,000	\$ 16,500.00
MERIDIAN_27	5271	LF	TYPE A	25	3.03	MERIDIAN	\$ 75,000	\$ 227,250.00
					20.44	SEGMENTS SUBTOTAL		\$ 1,562,898

ROW AQUISTION - OPINION OF PROBABLE COST								2-2	
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	$\begin{array}{\|l} \text { ROW } \\ \text { WIDTH } \end{array}$	ACRES	LOCATION	$\begin{aligned} & \text { COST/ } \\ & \text { ACRE } \end{aligned}$		$\begin{gathered} \text { COST/ } \\ \text { SEGMENT } \end{gathered}$
W BOISE_1	5432	LF	TYPEA	25	3.12	BOISE	\$ 85,900	\$	268,008.00
W BOISE_2	4813	LF	TYPEA	25	2.77	BOISE	\$ 85,900	\$	237,943.00
WBOISE ${ }^{\text {W }}$	62	LF	TYPEF	25	0.04	BOIISE	\$ 85,900	\$	3,436.00
W BOISE_4	518	LF	TYPEA	25	0.30	BOIISE	\$ 85,900	\$	25,770.00
W BOISE 5	1619	LF	TYPEA	25	0.93	BOIISE	\$ 85,900	\$	79,887.00
W BOISE_6	366	LF	TYPED	15	0.13	BOISE	\$ 85,900	\$	11,167.00
W BOISE_7	1439	LF	TYPE D	15	0.50	BOIISE	\$ 85,900	\$	42,950.00
W $\mathrm{BOOISE}=8$	1031	LF	TYPEA	25	0.60	BOIISE	\$ 85,900	\$	51,540.00
W BOISE_9	1150	LF	TYPED	15	0.40	BOISE	\$ 85,900	\$	34,360.00
W BOISE 10	2013	LF	TYPED	15	0.70	BOIISE	\$ 85,900	\$	60,130.00
W BOISE ${ }^{\text {a }}$ - 11	1242	LF	TYPED	15	0.43	BOIISE	\$ 85,900	\$	36,937.00
W BOISE 12	221	LF	TYPED	15	0.08	BOISE	\$ 85,900	\$	6,872.00
W BOISE_14	453	LF	TYPE D	15	0.16	BOISE	\$ 85 85,900	\$	13,744.00
					10.16	SEGMENTS SUBTOTAL		\$	872,744
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	$\begin{array}{\|c} \text { ROW } \\ \text { WIDTH } \end{array}$	ACRES	LOCATION	cost/ ACRE		$\begin{aligned} & \text { COST/ } \\ & \text { SEGMENT } \end{aligned}$
SPUR BOISE_1	1706	LF	TYPEA	25	0.98	BOISE	\$ 85,---90	S	84,182.00
SPUR BOISE 2	254	LF	TYPEA	25	0.15	BOISE	\$---85,900	\$	12,885.00
SPUR BOISE 3	1677	LF	TYPEA	25	0.97	BOIISE	\$----85,900	\$	83,323.00
SPUR BOISE-4	1680	LF	TYPEA	25	0.97	BOİE	\$-----85,900	\$	83,323.00
SPUR BOISE_5	136	LF	TYPE	15	0.05	BOİEE	\$---85,900	\$	4,295.00
					3.12	SEGMENTS SUBTOTAL		\$	268,008
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	$\begin{array}{\|c} \text { ROW } \\ \text { WIDTH } \end{array}$	ACRES	LOCATION	$\begin{aligned} & \text { COST/ } \\ & \text { ACRE } \end{aligned}$	COST/ SEGMENT	
C BOISE_1	1342	LF	TYPE A	25	0.78	BOISE	\$ 85,900	\$	67,002.00
C BOISE_2	1300	LF	TYPE A	25	0.75	BOISE	\$ 85,900	\$	64,425.00
C BOISE_3	1272	LF	TYPE A	25	0.74	BOISE	\$ 85,900	\$	63,566.00
C BOISE_4	1269	LF	TYPE D	15	0.44	BOISE	\$ 85,900	\$	37,796.00
C BOISE_5	1251	LF	TYPE D	15	0.44	BOIISE	\$ 85,900	\$	37,796.00
C BOISE_6	1234	LF	TYPE D	15	0.43	BOISE	\$ 85,900	\$	36,937.00
C BOISE_7	619	LF	TYPE D	15	0.22	BOISE	\$ 85,900	\$	18,898.00
C BOISE_8	135	LF	TYPE F	25	0.08	BOIISE	\$ 85,900	\$	6,872.00
C BOISE_9	1319	LF	TYPE D	15	0.46	BOISE	\$ 85,900	\$	39,514.00
C BOISE_10	62	LF	TYPE F	25	0.04	BOIISE	\$ 85,900	\$	3,436.00
C BOISE_11	731	LF	TYPE D	15	0.26	BOIISE	\$ 85,900	\$	22,334.00
C BOISE_12	846	LF	TYPE A	25	0.49	BOIISE	\$ 85,900	\$	42,091.00
C BOISE_13	268	LF	TYPE A	25	0.16	BOISE	\$ 85,900	\$	13,744.00
C BOISE_14	143	LF	TYPE F	25	0.09	BOIISE	\$ 85,900	\$	7,731.00
C BOISE_15	668	LF	TYPE A	25	0.39	BOIISE	\$ 85,900	\$	33,501.00
C BOISE_16	204	LF	TYPE D	15	0.08	BOISE	\$ 80 85,900	\$	6,872.00
					5.85	SEGMENTS SUBTOTAL		\$	502,515
SEGMENT	QUANTITY	UNIT	TYPICAL SECTION	ROW WIDTH	ACRES	LOCATION	cost/ ACRE	cost/ SEGMENT	
S BOISE_1	1949	LF	TYPE A	25	1.12	BOISE	\$ ACRE	\$	96,208.00
S BOISE_2	255	L---	TYPE E	25	0.15	BOİE	\$ 85,900	\$	12,885.00
S BOISE_3	939	LF	TYPE A	25	0.54	BOİSE	\$ 85,900	\$	46,386.00
S BOISE_4*	75	L-	TYPE A	25	0.05	BOISE	\$	\$	--------------------
S BOISE_5	3409	LF	TYPE A	25	1.96	BOISE	\$	\$	---------
S BOISE_6	60	LF	TYPE F	25	0.04	BOISE	\$	\$	-
S BOISE_7	7282	LF	TYPE A	25	4.18	BOISE	\$	\$	-
					8.04	SEGMENTS SUBTOTAL		\$	155,479
ROW TOTALS					62.49 ACRES			\$ 4,111,596	
+City already owns the ROW								pg	

[^0]: ${ }^{1}$ The 5 -inches of concrete over 8-inches of aggregate base course is the City of Boise standard for multi-use paths and was selected as the primary section due to unknown subgrade conditions.

[^1]: * Already Signalized, adding additional signage

[^2]: + Use existing parking, only update access

