I-84 Corridor Operations Plan
ACKNOWLEDGMENTS

PARTICIPATING AGENCIES & STEERING COMMITTEE
Federal Highway Administration (FHWA-ID)
Idaho Transportation Department – Headquarters
Idaho Transportation Department – District 3
State Communications
Ada County Highway District
Valley Regional Transit
Idaho State Patrol
Boise Police Department
City of Meridian
City of Nampa
City of Caldwell
Sysco, Inc. (Freight Advisory)

CONSULTANT TEAM
Jim Peters, DKS Associates
Dock Rosenthal, DKS Associates
Veronica Sullivan, DKS Associates
Melissa Abadie, DKS Associates
Randy Knapick, IBI Group
Anabelle Yang, IBI Group
TABLE OF CONTENTS

INTRODUCTION ... 1
Project Purpose ... 2
Goals and Objectives .. 3
Project Approach ... 4

OPERATIONS IN THE I-84 CORRIDOR TODAY 5
I-84/I-184 Corridor Description and Conditions 6
Corridor TSMO Strategies .. 6
Agency Roles and Responsibilities ... 7
Key Operational Issues Identified ... 8

I-84 CORRIDOR OPERATIONS VISION 9
I-84 Corridor User Experience ... 10
Vision .. 12

EVALUATION OF OPERATIONAL STRATEGIES AND TACTICS 13
Strategies and Tactics Identified .. 14
First-Level Screening (Long-List Tactics) 15

IMPLEMENTATION PLAN FOR RECOMMENDED OPERATIONAL STRATEGIES ... 17
Screening of Shortlisted Tactics .. 18
Top Ranked Tactics by Theme .. 21
Selection of Tactics for the Implementation Plan 22
Introduction
The I-84 corridor is one of the most important east-west routes for commuters and freight through southwest Idaho that connects Caldwell, Nampa, Meridian and Boise. I-184 serves as an auxiliary route to downtown Boise that begins at the Flying Wye interchange with I-84 and transitions to Route 26. Although there have been significant improvements made to the interstate, the corridor continues to experience congestion, safety concerns and reliability challenges.

The project study corridor is shown in Figure 1. It comprises a 32-mile corridor from Exit 25 to Exit 57 along I-84 and the auxiliary route along I-184 from the Flying Wye interchange to S 13th St in downtown Boise. The figure shows the locations of ramps and terminal points of the study corridor.

This report includes an assessment of the existing conditions related to operations of the study corridor. It also provides an overview of the evaluation process as well as the operational concepts for the strategies evaluated to improve traffic operations. The purpose of this plan is to provide a guide for future improvements that can be implemented as the need arises or the funding becomes available.
GOALS AND OBJECTIVES

The three goals, and their corresponding objectives, were developed with input from the stakeholder steering committee. These goals provided a framework to focus the many proposed tactics into a concise list that fits the needs in the study area.

GOAL #1: IMPROVE SAFETY OF THE I-84/I-184 CORRIDOR.

- Reduce fatal and serious injury crashes.
- Reduce overall frequency of crashes due to severe weather or other hazardous conditions.
- Reduce crashes in work zones.
- Reduce crashes caused by congestion bottlenecks and stopped traffic.

GOAL #2: MAXIMIZE CAPACITY AND RELIABILITY FOR ALL USERS OF I-84/I-184.

- Increase travel time reliability for passenger vehicles, freight, and transit.
- Target low-cost, high-impact infrastructure investments.
- Improve clearance times for incidents.
- Improve multimodal travel options across the east-west corridor.

GOAL #3: MANAGE I-84/I-184 AS PART OF AN INTEGRATED TRANSPORTATION SYSTEM.

- Improve coordination between agencies that manage the corridor.
- Strengthen coordination of freeway operations and incident response.
- Enhance multimodal traveler information.
The project consisted of four phases:

STAGE 1: EVALUATION OF CURRENT PERFORMANCE

At this stage of the project existing data was reviewed and any key findings were identified. These conditions formed the basis for the strategies that were proposed in Phase 3.

STAGE 2: GOALS, OBJECTIVES, AND PERFORMANCE MEASURES

At this stage of the project the evaluation structure of the subsequent phases was identified.

STAGE 3: IDENTIFY AND SCREEN STRATEGIES

This phase included two levels of screening, first-level and second-level. The first-level screen included a broad set of strategies and tactics to address the concerns identified in Phase 1 and the goals identified in Phase 2. The screening process reduced the list to a more concise set of strategies and tactics that were evaluated in the second-level screening. The tactics that passed both the first and second level screens were included in the Implementation Plan.

STAGE 4: DEVELOP IMPLEMENTATION PLAN AND FINAL REPORT

The Implementation Plan created a toolbox of ITS improvements that are the best fit for the I-84 corridor. The Final Report incorporated the Implementation Plan and summarized the previous phases of the project to provide context for any interested party that may benefit from the analysis included here.
Operations in the I-84 Corridor Today
I-84/I-184 CORRIDOR DESCRIPTION AND CONDITIONS

The corridor was organized into five segments, which are color-coded in Figure 2. The study segments were selected to reflect the different characteristics of the corridor. The segments are as follows:

- **Segment A**: West of Exit 36 (N Franklin Blvd) on I-84
- **Segment B**: I-84 Exit 36 to I-84 Milepost 48.4 (end of westbound drop lane)
- **Segment C**: Flying Wye: I-84 Milepost 48.4 (end of westbound drop lane) to MP 50.2 Cole Rd Interchange (Exit 50 A-B) and I-184 Franklin interchange (Exit 1-A)
- **Segment D**: I-184 Exit 1-A (Franklin interchange) to S 13th St
- **Segment E**: East of Exit 50 (Cole Rd Interchange)

FIGURE 2: STUDY CORRIDOR SEGMENTS

CORRIDOR TSMO STRATEGIES

See the Appendix for a summary of the key findings, challenges, congestion data, safety data, and stakeholder feedback for each corridor segment.
AGENCY ROLES AND RESPONSIBILITIES

- The **Idaho Transportation Department (ITD)** is the lead agency for managing the infrastructure and any ITS improvements along I-84/I-184.
- Due to the corridor’s national significance, and related funding sources, **FHWA** is another leader in managing the corridor.
- **COMPASS**, the regional planning organization, provides coordination across jurisdictional boundaries.
- **State Communications** provides emergency communications dispatch and records incident logs of those events.
- **Idaho State Patrol** provides incident response and safety enforcement along the corridor.
- Transit service is provided by **Valley Regional Transit**.
- The **Ada County Highway District (ACHD)** monitors cameras and collects incident logs on I-84. ACHD also manages and operates the traffic signals on adjacent arterials in Meridian and Boise.
- The **City of Meridian, City of Nampa**, and **City of Caldwell** are all served by I-84. Nampa and Caldwell operate traffic signals at the ramp terminals and their city limits.

These agencies, and stakeholders in the project, were interviewed to discuss their concerns and ideas regarding the I-84/I-184 study corridor. Table 1 highlights some of the frequent themes, concerns, and suggestions from stakeholders.

TABLE 1: AGENCY PARTNER INPUT

<table>
<thead>
<tr>
<th>REOCCURRING THEME</th>
<th>REOCCURRING CONCERNS</th>
<th>FREQUENT SUGGESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROADWAY CONCERNS</td>
<td>Ramp Spillovers and Congestion</td>
<td>Ramp metering</td>
</tr>
<tr>
<td></td>
<td>Lane Capacities</td>
<td>HOV lanes or variable lanes in peak hours</td>
</tr>
<tr>
<td>SIGNS/READER BOARDS</td>
<td>Interest in Variable Messages</td>
<td>Estimated travel times</td>
</tr>
<tr>
<td></td>
<td>Information Displayed to Travelers</td>
<td>Digital messaging signs (DMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative modes and routes (detours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accident ahead warning</td>
</tr>
<tr>
<td>PHYSICAL EQUIPMENT</td>
<td>Low Coverage in Canyon County</td>
<td>Expand cameras in Canyon County</td>
</tr>
<tr>
<td></td>
<td>Limited First Responder Vehicles</td>
<td>More incident response vehicles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(push bumpers, digital message signs)</td>
</tr>
<tr>
<td>COMMUNICATION & COORDINATION</td>
<td>Better Accessibility to Shared Equipment</td>
<td>Shared control and access to cameras</td>
</tr>
<tr>
<td></td>
<td>Distributing Plans and Providing Information Faster to Responders and Services Affected</td>
<td>Improve distribution of detour plans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Playbook of roles and responsibilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Providing training and certifications</td>
</tr>
</tbody>
</table>
KEY OPERATIONAL ISSUES IDENTIFIED

The following are notable findings from the existing conditions data collection and analysis:

TRAFFIC VOLUMES: Segment B, from Nampa to the Flying Wye, experienced the highest traffic volumes compared to the rest of the study corridor. In particular, the interchanges in Nampa experienced the highest level of congestion during both the AM and PM peak period.

SAFETY: Between 2015 and 2019, Segment B experienced the highest frequency of crashes, while Segment A (west of Nampa) experienced the most high-severity crashes during the five-year study period. The areas near I-84 exit 36, exit 38, exit 44 and the Flying Wye are particularly crash-prone. One out of ten crashes were reported as a work zone related crash and 40 percent of all crashes occurred at ramp locations. Per the Safe Systems Approach, the focus should be on the locations with the highest frequency of fatal and serious injury crashes.

INCIDENT LOGS: Between 2018 and 2020 most incidents occurred in Segment A and Segment B. Most of these incidents were related to a motor vehicle collision but other categories with high numbers of incidents include disabled vehicle, traffic hazard, construction problem and water on road. The duration of a crash event has remained relatively consistent with the 50th percentile at approximately 60 minutes for both eastbound and westbound directions.

ONGOING AND PLANNED PROJECTS: Treasure Valley has completed significant planning and construction around ITS coordination and infrastructure. I-84 is undergoing various construction projects between Nampa and Caldwell that involve interstate widening, overpass widening, and other improvements.
I-84 Corridor Operations Vision
I-84 CORRIDOR USER EXPERIENCE

The I-84 Corridor Operations Plan envisions a transportation network that is increasingly connected, using advanced technologies and interagency collaboration to improve safety, mobility, reliability, and choice for Treasure Valley travelers.

The goal is to operate the I-84 corridor as part of a seamless transportation network that spans both Canyon and Ada Counties. This network includes transportation infrastructure and services operated by the Idaho Transportation Department, Ada County Highway District, Valley Regional Transit, and local jurisdictions.

A dynamic corridor like I-84 in the Treasure Valley demands a dynamic response to rapidly evolving conditions. Peak hour and special event traffic, accidents and incidents, severe weather, and construction are just a few of the challenges that require a proactive and real-time response to traffic conditions.

In the future, Treasure Valley traffic and emergency management partners will coordinate to share information and manage the network in a similarly dynamic fashion, using advanced technologies and information sharing to increase situational awareness and allow for an effective response.

Many transportation and emergency management agencies play a role in managing the I-84 corridor. Effective communications and coordinated response is critical to responding to traffic incidents, coordinating interstate and arterial operations, and informing travelers of real-time conditions.

The plan envisions new technologies and tactics, which have been pioneered in other parts of the country, to address growing operational challenges and traffic volumes in the Treasure Valley. An example is Ramp Metering, which can reduce congestion and safety hazards due to merging traffic in interchange areas. Another new tactic is Shoulder Running Transit, which would allow VRT express routes between Ada and Canyon Counties to drive on Interstate shoulders to bypass stopped or slow traffic, providing greater reliability and more competitive travel alternatives for corridor travelers. Dynamic Roadway Warning and Smart Work Zone technology are ways to increase safety through focused deployment of technology.
In the future, Treasure Valley agencies will continue to use and refine the use of proven technologies that already provide significant benefit to the region. These include: Traffic Signal Management and Operations (with coordination across jurisdictions and with Interstate operations); Roadside Traveler Information, with coordinated Dynamic Message Signs deployment along I-84 and approach arterials; and expansion of ITD’s Roadway Service Patrol program.

The operations vision includes updated “playbooks” (standard operating procedures) and agreements for how transportation agencies work together to respond to incidents, implement detours, and communicate with the public. Improved video and data sharing capabilities provide access to real-time conditions in the I-84 corridor, which for examples allows law enforcement and ITS maintenance to coordinate response to roadway incidents and blockages.

As the I-84 corridor continues to evolve, continual agency coordination and refinement of operational strategies is necessary to maintain effectiveness. A multi-agency Corridor Operations Team will provide an ongoing forum for transportation and emergency agencies to debrief and learn from past incident and operational response.

As champions for effective system management, the Corridor Operations Team will also look for opportunities to apply new and evolving technologies to address the needs of the corridor, and advocate for the resources and support needed to maintain the effectiveness of the program through staffing, technology investment, and training.

Ultimately, travelers will be able to plan their trip with an awareness of the travel time for all modes, the location of the nearest bus, locations affected by incidents, construction or weather. During the trip, travelers will have real-time information about incidents, hazardous conditions, travel times, and transit arrival information, the corridor travel times will be reliable and the trip safer due to the technology and active corridor management and operations.
Regional Video and Data Information Sharing provides situational awareness to all agencies connected to roadway CCTV cameras. Dynamic Message Signs (DMS) inform travelers of real-time roadway conditions at key decision points. Smart Work Zone technology protects workers and motorists through speed notifications, surveillance, and motorist warnings. Ramp Metering evens out the flow of traffic entering the Interstate, reducing merge conflicts, congestion, and crashes. Dynamic Roadway Warnings alert motorists of safety hazards such as frequent icing/flooding locations. Geometric improvements like on-ramp and auxiliary lane configuration may improve operations in the congested segment of I-84, such as between Exits 42 and 46. Shoulder Running Transit allows VRT buses to bypass slowed or stopped traffic to improve travel time reliability and competitiveness.

The Regional Performance Management System measures operations program effectiveness compared to regional safety and mobility goals. A web-based Enhanced Detour Plan includes pre-planned scenarios to manage traffic diverting in the event of major incidents. Interoperable Communications Procedures provide a common “Playbook” for agencies to implement operational responses in a coordinated fashion.

Event Management is a coordinated effort to manage traffic associated with large-scale pre-planned events like concerts and sports.

Traffic Incident Management plans and laws provide a coordinated response to roadway incidents with traveler and first responder safety in mind.

Roadway Service Patrols provide quick response to disabled motorists, and act as a “force multiplier” for law enforcement in implementing lane closures and detours.

Real-time traveler information provided through Idaho 511 and other sources informs real-time travel decisions for motorists, transit riders, and freight.
Evaluation of Operational Strategies and Tactics
The project team assembled an initial TSMO toolbox of strategies with the potential to meet the I-84 project goals along the corridor. The TSMO strategies toolbox includes 37 tactics, organized into six strategies:

1. **Traffic Management**
2. **Incident and Emergency Management**
3. **Road Weather Management**
4. **Public Transportation**
5. **Performance Measurement**
6. **Work Zone Management**

The screening process will allow the project team to narrow a full-range of TSMO tactics, to those that best meet the identified goals and needs for the I-84 corridor study area. The screening levels and applied criteria for each level are shown in Figure 3.

Figure 3: Screening Levels and Criteria

1. **First-Level Screening > Narrow to Fewer Tactics**
 - **Criteria:** I-84 corridor goals

2. **Second-Level Screening > Narrow to Fewer Tactics**
 - **Criteria:** Operational benefits, feasibility, initial cost, and on-going maintenance cost

Implementation Plan

Advance recommended strategies to the implementation plan.
The initial 37 tactics, organized by the six strategies, are presented in Table 2. Each tactic scored to produce a rating which was subsequently reviewed at a stakeholder meeting and the second-level screening tactics were selected, a graphic showing this process is shown in Figure 4. For more information about each tactic and to see the rating used to evaluate it see I-84 Corridor Operations Plan – First Level Screening Methodology (August 2021).

Table 2: First-Level Screening Tactics by Strategy

<table>
<thead>
<tr>
<th>Traffic Management</th>
<th>Incident and Emergency Management</th>
<th>Public Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Active Traffic Management (ATM)</td>
<td>• Corridor Operations Team</td>
<td>• Active Demand Management Strategies</td>
</tr>
<tr>
<td>• Active Traffic Management (Dynamic Lane Control)</td>
<td>• Emergency Management – Contra Flow on I-84/I-184</td>
<td>• Real-Time Transit Information</td>
</tr>
<tr>
<td>• Ramp Metering</td>
<td>• Enhanced Detour Plans</td>
<td>• Transit Traveler Information through Third-Party Services</td>
</tr>
<tr>
<td>• Expanding Traffic Surveillance (Cameras and Detection)</td>
<td>• Interoperable Communications Procedures/Operations Playbook</td>
<td>• Shoulder Running Transit</td>
</tr>
<tr>
<td>• Regional Video and Data Sharing (Monitoring and Control)</td>
<td>• Regional Alert System (Incident Queue/Situational Awareness)</td>
<td></td>
</tr>
<tr>
<td>• Roadside Traveler Information (Dynamic Message Signs)</td>
<td>• Roadway Service Patrols</td>
<td></td>
</tr>
<tr>
<td>• Roadside Traveler Information (Dynamic Message Signs Travel Time Estimates)</td>
<td>• Towing Contract (Hourly, Staged or Dry-Run)</td>
<td></td>
</tr>
<tr>
<td>• Dynamic Roadway Warning</td>
<td>• Traffic Incident Management Strategic Plan (Laws, Program and Training)</td>
<td></td>
</tr>
<tr>
<td>• Traffic Signal Management and Operations</td>
<td>• Regional Performance Management System, such as RITIS, ITS Data Warehouse</td>
<td></td>
</tr>
<tr>
<td>• HOV</td>
<td>• Automated Work Zone Information Systems (Smart Arrow Board Technology)</td>
<td></td>
</tr>
<tr>
<td>• Connected and Automated Vehicle Readiness</td>
<td>• Dynamic Lane Merge (Zipper Merge)</td>
<td></td>
</tr>
<tr>
<td>• Regional Traveler Information (Websites and Mobile Applications)</td>
<td>• Smart Work Zones (Work Zone Data Exchange)</td>
<td></td>
</tr>
<tr>
<td>• Event Management</td>
<td>• Automated Speed Limit Enforcement</td>
<td></td>
</tr>
<tr>
<td>• Automated Decision-Support System (ATMS Software)</td>
<td>• Work Zone Transportation Management Plan</td>
<td></td>
</tr>
<tr>
<td>• On-ramp Configuration and Auxiliary Lanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Availability of Truck Parking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Score Each Strategy 0 - 10

2. Apply Stakeholder Goal Weighting

3. Weighting from Stakeholder Input

4. Convert Final Scores to Icons

Utility Factor
Goal 1 = 41
Goal 2 = 31
Goal 3 = 28

Apply to Score = Weighted Score

Weighted Score x Multiplier = Final Score

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No strong support</td>
</tr>
<tr>
<td>1.15</td>
<td>Support from at least 3 agencies</td>
</tr>
<tr>
<td>1.2</td>
<td>Moderate support</td>
</tr>
<tr>
<td>1.25</td>
<td>Large support from majority</td>
</tr>
</tbody>
</table>

FIGURE 4: SCREENING METHODOLOGY
Implementation Plan for Recommended Operational Strategies
SCREENING OF SHORTLISTED TACTICS

The first level screening process evaluated candidate tactics against the three operational goals of Safety, Capacity & Reliability, and Integrated Transportation System. This first level resulted in 17 tactics that advanced to a second level screening which looked more closely at Benefits, Annualized Costs, and Implementation Feasibility criteria. Where applicable, a benefit-cost ratio was calculated for each tactic using USDOT’s Tool for Operations Benefit Cost (TOPS-BC). An overall weighted score was developed for each tactic on a 1-10 scale, capturing the combined benefits, costs, and feasibility of each tactic and effectiveness in meeting one or more of the project goals.

Table 3 summarizes the rankings for each tactic against the project goals (first level screening), the second-level screening criteria, and the overall blended score for each tactic.

As the summary shows, some tactics have generalized effectiveness against multiple project goals, such as Regional Video and Data Sharing. Other tactics are more target towards meeting a specific project goal, such as the emphasis of Dynamic Roadway warning on safety.

Because no individual tactic will effectively meet all regional goals, a successful operations program for the Treasure Valley will pursue a “layered” approach of implementing multiple strategies that address different goals in different geographic areas of the corridor. Together, these tactics combine to form a comprehensive and effective approach that engages multiple agencies, technologies, and plans to manage the I-84 corridor. The highest priority tactics for the stakeholder group are noted with a * in Table 3.

Similarly, the Benefit, Cost, and Implementation Feasibility criteria show a range of effectiveness and complexity in implementing specific tactics. For example, Ramp Metering is expected to have high benefits and is expected to be highly feasible to implement. However, the annualized cost is relatively high compared to other strategies, so the benefits will require a commitment to the investment. By contrast, the Corridor Operations Team is quick and inexpensive to implement, an “early win” strategy that requires modest time commitments of existing agency staff to meet periodically. But while essential for overall regional coordination, the direct benefits of the Corridor Operations Team on day-to-day performance of the I-84 corridor is lower compared to a high-benefit tactic like Ramp Metering.

Additional detail on each tactic and the second level screening process can be found in the I-84 Corridor Operations Plan Tactics Screening Results Memo (December 2021).
Table 3: Summary of Rankings by Tactic

<table>
<thead>
<tr>
<th>Tactic</th>
<th>First Level Screening*</th>
<th>Second Level Screening*</th>
<th>Overall Score (1–10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Video & Data Sharing (Monitoring, Control, Cameras, Detection)</td>
<td> </td>
<td> </td>
<td>n/a 8.7</td>
</tr>
<tr>
<td>Roadside Traveler Information (Dynamic Message Signs, Travel Time Estimates)</td>
<td> </td>
<td> </td>
<td>0.36 8.0</td>
</tr>
<tr>
<td>Interoperable Communications Procedures/Operations Playbook (SOP)</td>
<td> </td>
<td> </td>
<td>n/a 8.0</td>
</tr>
<tr>
<td>Enhanced Detour Plans</td>
<td> </td>
<td> </td>
<td>n/a 7.7</td>
</tr>
<tr>
<td>Ramp Metering</td>
<td> </td>
<td> </td>
<td>7.04 7.7</td>
</tr>
<tr>
<td>Roadway Service Patrols</td>
<td> </td>
<td> </td>
<td>n/a 7.7</td>
</tr>
<tr>
<td>Corridor Operations Team</td>
<td> </td>
<td> </td>
<td>n/a 7.3</td>
</tr>
<tr>
<td>Regional Performance Management System</td>
<td> </td>
<td> </td>
<td>n/a 7.3</td>
</tr>
<tr>
<td>Traffic Incident Management Program</td>
<td> </td>
<td> </td>
<td>n/a 7.3</td>
</tr>
</tbody>
</table>

*For a more detailed explanation of each screening method and meaning, see the Appendix.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

*Stakeholder highest priority
<table>
<thead>
<tr>
<th>TACTIC</th>
<th>FIRST LEVEL SCREENING*</th>
<th>SECOND LEVEL SCREENING*</th>
<th>OVERALL SCORE (1–10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GOAL 1: SAFETY</td>
<td>GOAL 2: CAPACITY & RELIABILITY</td>
<td>GOAL 3: INTEGRATED TRANSPORTATION SYSTEM</td>
</tr>
<tr>
<td>DYNAMIC ROADWAY WARNING (HOTSPOTS/WATER ON ROADWAY RWIS)</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>REAL-TIME TRANSIT INFORMATION</td>
<td></td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>SMART WORK ZONES (AUTOMATED INFORMATION SYSTEMS, SMART ARROW BOARDS)</td>
<td></td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>TRAFFIC SIGNAL MANAGEMENT AND OPERATIONS (COORDINATION AND SIGNAL PERFORMANCE MEASURES)</td>
<td></td>
<td></td>
<td>🟠</td>
</tr>
<tr>
<td>ACTIVE TRAFFIC MANAGEMENT</td>
<td></td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>EVENT MANAGEMENT</td>
<td></td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>SHOULDER RUNNING TRANSIT</td>
<td></td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>ON-RAMP CONFIGURATION AND AUXILIARY LANES</td>
<td></td>
<td>🟠</td>
<td>🟠</td>
</tr>
</tbody>
</table>

* For a more detailed explanation of each screening method and meaning, see the Appendix.

- 🟠 Best achieves
- 🟠 Mostly achieves
- 🟠 Achieves somewhat
- 🟠 Achieves a little
- 🟠 Does not achieve

* Stakeholder highest priority
TOP RANKED TACTICS BY THEME

Here is a summary of the top-ranked tactics according to three themes: high benefit, favorable cost, and high feasibility.

HIGH BENEFIT

These tactics have the highest ultimate payback in terms of operational benefits and effectiveness in meeting the goals. Roadside Traveler Information using Dynamic Message Signs (DMS), Ramp Metering, and Highway Service Patrols each provide direct benefit to the corridor operations: respectively these are real-time traveler information, congestion reduction, and quicker traffic incident clearance. As a tradeoff, they all represent significant capital and/or operating investments, but those costs are still considerably lower than conventional roadway capacity infrastructure investments like Interstate widening.

Interoperable Communications/Standard Operating Procedures (SOPs) is another high benefit strategy that focuses on improve interagency coordination to create a more seamless and effective operations program, particularly for traffic incidents, construction, and major events. Lastly, Active Traffic Management has been shown to have significant safety benefits in other jurisdictions that may justify the relatively high implementation costs to construct roadway instrumentation, signage gantries, and new central control center software and staffing capabilities.

FAVORABLE COST

These tactics are relatively low cost to implement and operate. Three of the tactics – Regional Video and Data Sharing, Enhanced Detour Plans, and the Corridor Operations Team, require little or no capital investment. The key to their success, however, is agency buy-in and ongoing commitment to implement and update these strategies over time through multi-agency partnerships, policies, and agreements.

Dynamic Roadway Warning is low cost because it is geographically targeted to specific areas prone to icing or flooding, such as the I-184 connector. Additional hotspots could be addressed over time based on the efficacy of the initial pilot implementation. Smart Work Zones can be implemented as a relatively low-cost measure in select construction projects, potentially as a pilot project prior to committing to full-sale implementation.

HIGH FEASIBILITY

These tactics are among the simplest and easiest to implement in terms of project complexity, technological maturity, and agency coordination. Roadside Traveler Information leverage and expands existing and proven Dynamic Message Sign technology. Ramp Metering is new to the Treasure Valley but has been deployed on a widespread basis elsewhere. Both of these strategies can be ITD led to evaluate, design, and implement the technology and infrastructure along the I-84 corridor.

The Corridor Operations Team could begin meeting imminently with only modest dedication of agency staff time and commitment to achieving a defined operational goal. Smart work zone technology is highly suited to a pilot implementation, and is adaptable to address various safety and congestion reduction objectives.
SELECTION OF TACTICS FOR THE IMPLEMENTATION PLAN

Through discussion and review of the screening and ranking of shortlisted tactics, the participating agencies in the Steering Committee determined that the Implementation Plan should include all of the shortlisted tactics. Many of the tactics are likely to be implemented in an opportunistic fashion, as grant funding or other discretionary funding sources are identified. Therefore, it is appropriate to include a diversity of worthy tactics as candidates for funding opportunities when they arise.

There are however several tactics that should be actively pursued due to their high benefit, favorable costs, high feasibility, and importance to regional stakeholders. The following describes the road map to improve the management and operations capabilities along the I-84 corridor:

PROGRAMMATIC/OPERATIONAL IMPROVEMENTS

These improvements require little to no investment in infrastructure. They build upon and improve existing capabilities. They are not dependent on each other and can be implemented in tandem or separately as funds are available.

- Expand highway service patrols
- Establish a corridor operations team
- Update detour plans
- Establish/refresh interoperable communications/standard operating procedures
- Implement smart work zone standards

CAPITAL IMPROVEMENTS

These improvements require larger capital investment in new infrastructure and would need to be programmed in the transportation improvement program. There are also several opportunities to fund these projects through federal grant programs.

- Roadside traveler information – New Dynamic Message Signs
- Regional video and data sharing – Additional cameras and interagency operations
- Ramp metering

PROGRAM NEAR-TERM CAPITAL IMPROVEMENTS ($15 TO $30M)

- Roadside traveler information – New Dynamic Message Signs
- Regional video and data sharing – Additional cameras and interagency operations
- Ramp metering

EXPAND THE MANAGEMENT AND OPERATIONS CAPABILITIES IN THE CORRIDOR ($15 TO $20M)

- Active traffic management – Advisory/Variable speed limits and queue warning
- Dynamic roadway warning – Ice/water over roadway warning, etc.
Regional Video & Data Sharing

DESCRIPTION

This tactic aims to improve the multi-agency understanding of the freeway system operations through the sharing of video and other data related to past or current operations between local system managers.

This tactic is relatively inexpensive and fills in a few gaps in the camera infrastructure of the valley. The regional data sharing provides benefits to regional operations, incident management, and event management in real time.

COMPONENTS

- **New camera deployment** at four new locations in Ada and Canyon Counties:
 - I-84 at US 20/26
 - I-84 at Franklin Road
 - I-84 at Midland Boulevard
 - I-84 at Eisenman Road

- **Regional Video Sharing System** for virtual sharing and selective control of cameras from traffic and emergency management centers.

- **Regional Data Management System** for incidents and event data to improve inter-agency communications and situational awareness.

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCIES:

- Ada County Highway District
- City of Nampa
- State Comm
- Idaho State Police
- Ada County Sheriff
- Canyon County Sheriff

TIMEFRAME

NEAR TERM:

- Planning & Agreements (Year 1)
- Camera Deployment (Years 2–3)
- Systems Integration (Years 2–3)
GOAL 1: SAFETY
GOOD

GOAL 2: CAPACITY & RELIABILITY
GOOD

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
GOOD

PERFORMANCE COMPARED TO THE PROJECT GOALS

ANTICIPATED BENEFITS
- Provides shared real-time and historic system operations information.
- Improves visual information (related to freeway operations, situational awareness, incidents, and events) for decision makers and the public.
- Improves incident response times and accuracy.

GRANT FUNDING OPPORTUNITIES
- Advanced Transportation Technologies and Innovative Mobility Deployment Program
- National Highway Performance Program
- Congestion Relief Program
- Nationally Significant Freight and Highway Projects Program
- Strengthening Mobility and Revolutionizing Transportation

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
- ITD Statewide Traffic Management System Software Replacement
- City of Nampa Traffic Management Center
- Roadside Traveler Information (DMS)
- Dynamic Roadway Warning
- Traffic Signal Management and Operations
- Enhanced Detour Plans
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Regional Performance Management System
- Smart Work Zones
- Event Management
- Active Traffic Management

CAPITAL COSTS
- Camera Implementation (four site installations)
 $60,000 per site, $240,000 total
- Regional Video and Data Integration: $500,000 for software and integration

OPERATING COSTS
- $20,000/year hardware and IT maintenance

REGIONAL COORDINATION AND COLLABORATION
- Data sharing agreement
- Update operating procedures
- Integrate systems and data into a backend software

PHASING OPPORTUNITIES
PHASE 1: Complete deployment of four camera sites to increase coverage.
PHASE 2: Expand regional video management system and regional video sharing. Develop regional data/event dashboard to provide situational awareness to traffic and emergency management centers in the Treasure Valley.
Roadside Traveler Information

DESCRIPTION

This tactic alerts drivers of changing corridor conditions to enhance driver situational awareness and support informed route choices through Dynamic Message Signs (DMS). Feasibility of DMS integration parallels in many ways to regional video sharing.

This tactic uses work zone, event, incident response, traffic detection sensors, travel time, freight, video camera, weather, and other data to disseminate to drivers. This tactic is high-cost and requires field infrastructure, it can be combined with other tactics for cost savings such as Active Traffic Management and Dynamic Roadway Warning. Due to its cost, it has a low B/C ratio but yield benefits in majority of strategies addressed and project goals.

COMPONENTS

• Dynamic Message Sign (DMS) deployment at twelve locations:
 › I-84 Eastbound near (Exit 26)
 › Karcher Road (SH 55) Eastbound
 › Garrity Blvd Eastbound
 › Ten Mile Road Northbound
 › Meridian Road (SH 69) Northbound
 › Milwaukee Street and Franklin Road Westbound I-184 on-ramp
 › Cole Road Southbound
 › Curtis Road Northbound
 › Curtis Road Southbound
 › Orchard Street Southbound
 › Federal Way Northbound to Gowen Road

TIMEFRAME

NEAR TERM:
• Planning & Design
 (Years 1–2)
Performance Compared to the Project Goals

Goal 1: Safety
- **Performance:** Fair

Goal 2: Capacity & Reliability
- **Performance:** Good

Goal 3: Integrated Transportation System
- **Performance:** Good

Anticipated Benefits
- Support driver decisions in making alternate route choices.
- Mitigate congestion during construction, traffic, incidents, and hazardous conditions.

Regional Coordination and Collaboration
- Update operating procedures to support decisions and outline pre-approved messages used by State Comm.
- Integrate systems and data into a backend software.

Grant Funding Opportunities
- Advanced Transportation Technologies and Innovative Mobility Deployment Program
- National Highway Performance Program
- Surface Transportation Block Grant Program
- Congestion Relief Program
- Highway Safety Improvement Program
- Nationally Significant Freight and Highway Projects Program
- Strengthening Mobility and Revolutionizing Transportation

Strategies Addressed
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

Related Initiatives
- ITD Advanced Transportation Management System
- Regional Video & Data Sharing
- Dynamic Roadway Warning
- Enhanced Detour Plans
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Smart Work Zones
- Event Management
- Active Traffic Management

Capital Costs
- Sign (12 site installations):
 - $931,500 per site,
 - $11,178,000 total

Operating Costs
- 12,150/year per sign operations and maintenance

Phasing Opportunities
DMS can be installed as a standalone site or combined with multiple site locations depending on available funds.

Phase 1: Complete deployment of DMS and sharing protocols for specific event types. Portable DMS could be used in the interim period before permanent DMS signs are constructed.

Phase 2: Deploy additional DMS until full coverage on I-84 and adjacent arterial roadways.
TACTIC #3

Interoperable Communication Procedures/Operations Playbook (SOP)

DESCRIPTION
This tactic clarifies roles/responsibilities, decision making, and response actions to improve efficiency of operations under common Interstate and incident management scenarios.

It would be beneficial to prioritize this tactic to include all participating agencies and their assets in corridor wide operations. This tactic would support broader interagency collaboration and coordination to improve overall operations.

COMPONENTS
- Interoperable Communication Procedures/Operations Playbook to establish pre-approved guidelines for participating agencies.

LEAD AGENCY
- Idaho Transportation Department

PARTICIPATING AGENCIES:
- State Comm
- Ada County Highway District
- City of Nampa
- Idaho State Patrol
- Local Law Enforcement

TIMEFRAME
NEAR TERM:
- Revise Plans (Years 1–2)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
- FAIR

GOAL 2: CAPACITY & RELIABILITY
- FAIR/GOOD

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
- GOOD

ANTICIPATED BENEFITS
- Reduces traffic interruptions in travel and freight movement.
- Enables an efficient and effective response when dispatched to support any jurisdiction.

REGIONAL COORDINATION AND COLLABORATION
- Form a committee to lead SOP updates with collaboration of participating agencies.

GRANT FUNDING OPPORTUNITIES
- Congestion Relief Program
- Nationally Significant Freight and Highway Projects Program

CAPITAL COSTS
- Interoperable Communication Procedures/Operations Playbook Update: $75,000 per update

OPERATING COSTS
- Staff costs for periodic review and updates

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
- Regional Video & Data Sharing
- Roadside Traveler Information (DMS)
- Dynamic Roadway Warning
- Traffic Signal Management and Operations
- Corridor Operations Team
- Enhanced Detour Plans
- Roadway Service Patrols
- Traffic Incident Management Laws
- Regional Performance Management Systems
- Smart Work Zones
- Event Management
- Shoulder Running Transit
- Active Traffic Management
Enhanced Detour Plans

DESCRIPTION

The Enhanced Detour Plans tactic establishes pre-determined detour routes for vehicles and freight in the case of an emergency to lessen the impacts of congestion or road closures (due to weather or events). The region’s stakeholders have developed I-84 detour plans, but this tactic focuses on enhancements that may include integration with traffic management systems, automation, performance measurement, or locations where network or significant traffic changes have occurred to improve its effectiveness.

Updates can be planned mid-long term since existing detour plans have been updated fairly recently. This tactic is relatively low cost and yields benefits in multiple strategies and goals. Enhanced Detour Plans can be supported by other tactics and temporary equipment.

COMPONENTS
- Enhanced Detour Plan for managing incidents and emergencies implemented corridor wide.

LEAD AGENCIES
- COMPASS as the lead in maintaining and updating detour plan
- Idaho Transportation Department as oversight of implementation and training activities

PARTICIPATING AGENCIES:
- State Comm
- Ada County Highway District
- City of Nampa
- Idaho State Police
- Local Law Enforcement
- City of Caldwell
- City of Meridian
- City of Boise

TIMEFRAME
NEAR TERM:
- Revise Plans (Years 1–2)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
- FAIR/GOOD

GOAL 2: CAPACITY & RELIABILITY
- GOOD

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
- FAIR

ANTICIPATED BENEFITS
- Establishes a standard procedure and guidelines for planning, designing, and implementing detour plans.
- Pre-determines the best alternative routes to reduce traffic disruption and shorten the period of incident plan management.
- Reduces traffic interruptions in travel and freight movement.
- Enables an efficient and effective response when dispatched to support any jurisdiction.

GRANT FUNDING OPPORTUNITIES
- Congestion Relief Program
- Nationally Significant Freight and Highway Projects Program

CAPITAL COSTS
- Detour Plan Update: $75,000 per update

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
- Treasure Valley Regional Operations Work Group (ROWG)
- Enhanced Detour Plans
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Smart Work Zones
- Event Management

REGIONAL COORDINATION AND COLLABORATION
- Designate a lead agency who will lead operational implementation of detour plans, in collaboration with COMPASS and other participating agencies.
- Designate a committee to oversee plan implementation and training.
Ramp Metering

DESCRIPTION

This tactic aims to improve corridor operations by metering the rate of vehicles entering mainline traffic. Ramp meters reduce congestion on the Interstate and reduce crash risks in merging areas. It can be deployed using pre-timed configuration and expanded to include a central software with adaptive capabilities based on real-time conditions in the future.

This tactic uses traffic data provided by field sensors. Ramp meters support traffic management and public transportation operations for intercounty routes. Since it is planned as a long-term tactic, a pilot can be initially deployed to evaluate its feasibility before implementing corridor wide.

COMPONENTS

- Ramp meter deployment at 17 on-ramps spanning 11 total interchanges:
 - 10th Ave (Exit 28)
 - Franklin Rd (Exit 29)
 - Karcher Rd (Exit 33)
 - Northside Blvd (Exit 35)
 - Franklin Blvd (Exit 36)
 - Garrity Blvd (Exit 38)
 - Ten Mile Rd (Exit 42)
 - Meridian Rd (Exit 44)
 - Eagle Rd (Exit 46)
 - W Franklin Rd on I-184
 - N Curtis Rd

- Regional Ramp Metering Software for remote control of ramp meters to adjust peak-hour volume flow into mainline traffic.

BENEFIT-COST = 7.04 TO 1

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCIES:

- State Comm
- Ada County Highway District

TIMEFRAME

NEAR TERM:

- Planning & Engineering Design (Years 1–2)
GOAL 1: SAFETY
GOAL 2: CAPACITY & RELIABILITY
GOAL 3: INTEGRATED TRANSPORTATION SYSTEM

PERFORMANCE COMPARED TO THE PROJECT GOALS

<table>
<thead>
<tr>
<th>GOAL</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: SAFETY</td>
<td>GOOD</td>
</tr>
<tr>
<td>2: CAPACITY & RELIABILITY</td>
<td>GOOD</td>
</tr>
<tr>
<td>3: INTEGRATED TRANSPORTATION SYSTEM</td>
<td>POOR</td>
</tr>
</tbody>
</table>

ANTICIPATED BENEFITS

- Reduces abrupt speed changes that can potentially lead to rear-end crashes and degrade mainline operations.
- Improves interstate mainline operations.
- Relieves mainline bottlenecks by managing traffic volume flow into mainline traffic.

REGIONAL COORDINATION AND COLLABORATION

- Develop a funding plan and agreement.
- Create operating procedures of ramp metering timing during peak hour or under certain circumstances (incidents, weather events, planned events, work zones).
- Develop engineering plans and designs for supporting communications and system.

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

GRANT FUNDING OPPORTUNITIES

- Surface Transportation Block Grant Program
- Congestion Relief Program
- Nationally Significant Freight and Highway Project Program

CAPITAL COSTS

- Ramp Meter (17 site installations): $1,173,000 per site, $16,422,000 total
- Central ramp metering software and equipment: $1,265,000

OPERATING COSTS

- $102,000/year central ramp metering software and equipment operations and maintenance
- $3,250/year per field ramp meter maintenance

RELATED INITIATIVES

- ITD Advanced Transportation Management System
- Regional Video & Data Sharing for adaptive ramp meters
- Roadside Traveler Information (DMS)
- Dynamic Roadway Warning
- On-Ramp Configuration and Auxiliary Lanes
- Shoulder Running Transit for future ramp meter expansions

PHASING OPPORTUNITIES

PHASE 1: Complete deployment of a small group of ramp meters in the high congestion area and evaluate performance.

PHASE 2: Expand ramp meters and integrate ramp meters into a central ramp metering for daily operations.
Roadway Service Patrols

DESCRIPTION

This tactic serves stranded vehicles and clears minor incidents and hazardous debris. Vehicles would be outfitted with onboard DMS signs and push bumpers for emergency and non-emergency events.

Roadway Service Patrols are a highly feasible addition and “early win” to many aspects of incident management by responding to minor incidents and assisting larger events.

COMPONENTS

- Roadway Service Patrols full time employees addressing minor incidents and obstructions on highway that would operate corridor wide.
- Roadway Service Patrol vehicles outfitted (with onboard DMS signs and push bumpers) and pre-positioned at high-incident locations during peak hours or severe weather events to reduce incident response times.

LEAD AGENCY

- Idaho Transportation Department

TIMEFRAME

NEAR TERM:

- Outfitted Vehicles and Equipment (Years 1–3)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
GOOD

GOAL 2: CAPACITY & RELIABILITY
FAIR/GOOD

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
FAIR

ANTICIPATED BENEFITS
• Reduces interstate bottlenecks and delays due to blocked lanes and roadside incidents.
• Reduces potential for crashes and serious injuries caused by unexpected debris, lane closures, or slowed/stopped traffic.
• Support for law enforcement incident response, detour implementation, and event management.
• Increased public services and safety for disabled motorists.

GRANT FUNDING OPPORTUNITIES
• Highway Safety Improvement Program
• Nationally Significant Freight and Highway Projects Program

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
• Enhanced Detour Plans
• Interoperable Communications Procedures/Operations Playbook (SOP)
• Traffic Incident Management Laws
• Smart Work Zones
• Event Management

REGIONAL COORDINATION AND COLLABORATION
• Hire and train new incident response operators.
• Procure and operate additional incident response vehicles.
• Update corridor-wide operating procedures to responsibilities of roadway service patrols.

CAPITAL COSTS
• Roadway Service Patrol vehicle: $100,000 per outfitted vehicle
• 4-6 FTEs for Help Patrol Van Patrols and Operations and Maintenance

GOOD
FAIR/GOOD
FAIR
Corridor Operations Team

DESCRIPTION

The Corridor Operations Team is a group of multi-agency representatives meeting regularly to identify issues and improve corridor management and operations techniques through coordination, communication, and cooperation. The Corridor Operations Team will improve the overall day-to-day effectiveness of coordinated incident response through multi-jurisdiction collaboration of traffic management and emergency response pre- and post-incident and event coordination. This group can also be used for continual improvements in partnerships and implementation of tactics.

The Corridor Operations Team activities may include debriefs of major incident responses, pre-construction coordination, major event planning, ITS project implementation, training, operating procedures update, etc. This tactic is highly beneficial to corridor operations and requires a small operating budget and staff support. It addresses multiple strategies and performance against project goals.

COMPONENTS

• Organize and facilitate a Corridor Operations Team to lead the planning and activities for ongoing corridor management, operations, and incident response.
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
FAIR

GOAL 2: CAPACITY & RELIABILITY
FAIR/GOOD

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
FAIR/POOR

GRANT FUNDING OPPORTUNITIES
- Congestion Relief Program
- Highway Safety Improvement Program
- Nationally Significant Freight and Highway Projects Program

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
- Treasure Valley Regional Operations Work Group (ROWG)
- Enhanced Detour Plans
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Smart Work Zones
- Event Management

CAPITAL COSTS
- 0.25 FTE for lead agency Corridor Operations Team coordinator
- 0.1 FTE for other Corridor Operations Team Participants

OPERATING COSTS
- Participating staff time only – est. 0.25 FTE or less per year

ANTICIPATED BENEFITS
- Enhances operational partnerships and agreements.
- Supports implementation of technological/infrastructure, training, and performance monitoring improvements.

REGIONAL COORDINATION AND COLLABORATION
- Develop an interagency agreement that defines team objectives, daily and special operations, etc.
- Update corridor-wide operating procedures to responsibilities of corridor operations team.

PHASING OPPORTUNITIES
PHASE 1: Pilot Corridor Operations Team before establishing as a full-time committee.
TACTIC #8

Regional Performance Management System

DESCRIPTION

This tactic implements a regional performance management system such as the Regional Integrated Transportation Information System (RITIS) to provide data-driven insights about the corridor operations. The system uses data from a variety of sources including the ITS infrastructure on the corridor as well as other available data such as weather and more. Ultimately, the system enables the region to monitor the corridor performance measures defined to help achieve the corridor operating goals and objectives.

This tactic is largely focused on data systems integration and could be implemented near term. The regional performance management system supports all the regional goals. It can be used to demonstrate the contributions of TSMO technologies, programs, and future improvements to regional transportation goals.

COMPONENTS

- Regional Performance Management System Software across the entire Treasure Valley, Ada and Canyon Counties.

LEAD AGENCIES

- COMPASS to archive and analyze regional transportation data and combining regional transportation performance measures
- Idaho Transportation Department

PARTICIPATING AGENCIES:

- Ada County Highway District
- City of Nampa
- City of Caldwell
- Valley Regional Transit

TIMEFRAME

NEAR TERM:

- Agreements (Years 1–2)
- Data Integration (Years 3–4)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
GOOD/FAIR

GOAL 2: CAPACITY & RELIABILITY
GOOD/FAIR

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
GOOD

ANTICIPATED BENEFITS

• Data-driven insights into regional operations issues, including non-recurring events.

• Data repository and analysis tools to help measure the efficacy of operational strategies implemented.

• Supports regional transportation performance measurement, for metrics that rely on operations data and/or provide insight into operations measures like travel time reliability.

REGIONAL COORDINATION AND COLLABORATION

• Develop a data sharing agreement.

• Update operating procedures to include data sharing, device management, and performance measurement.

• Integrate data into a backend software.

PHASING OPPORTUNITIES

System can be implemented near term or on an ongoing incremental basis.

GRANT FUNDING OPPORTUNITIES

• Advanced Transportation Technologies and Innovative Mobility Deployment Program

• National Highway Performance Program

• Surface Transportation Block Grant Program

• Nationally Significant Freight and Highway Projects Program

• Strengthening Mobility and Revolutionizing Transportation

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES

• ITD Statewide Traffic Management System Software Replacement

• COMPASS Regional Transportation Data Repository

• Regional Video & Data Sharing

• Interoperable Communications Procedures/Operations Playbook (SOP)

CAPITAL COSTS

• Central data management system upgrades, ITS systems data integration, dashboard/analysis tools, and software licensing: Estimated $150,000-$250,000
Traffic Incident Management Program

DESCRIPTION

This tactic includes policies, programs, and training that support coordinated response to traffic incidents in the I-84 corridor, generally known as Traffic Incident Management (TIM) programs. The National Traffic Incident Management Coalition has established a National Unified Goal for TIM programs, including guidelines for agency coordination, policies, performance measures, and awareness. Enforceable quick clearance and move-over laws to removal disabled vehicles from travel lanes have proven effective nationally to speed incident clearance times and reduce risks of secondary crashes. There is also a need for sustained traffic incident response training programs to maintain safety and effectiveness of the significant number of transportation personnel, first responders, towing companies, HAZMAT crews, and others participating in TIM activities across the Treasure Valley.

COMPONENTS

- Review of Idaho TIM policies and programs, with the goal of continual improvement of operational response capabilities and effectiveness within the National Unified Goal framework.
- Sustained regional TIM training program, including full-time instructors to provide ongoing training and public awareness activities.
- Establish and monitor performance targets and clearance goals to measure effectiveness of TIM programs.
- Perform incident debriefs through Corridor Operations Team.
- Review Traffic Incident Management policies and laws to evaluate effectiveness and potential changes.
- Coordinate with development of complementary regional response plans and SOPs, such as traveler information and detour planning.
- Use roadside signage and awareness campaigns to notify public of quick clearance and move-over laws.

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCIES:

- State Communications
- Idaho State Patrol
- Ada County Highway District
- City of Nampa
- Other law enforcement agencies

TIMEFRAME

NEAR TERM:

- TIM Operational Effectiveness Review and Action Plan (Years 1–2)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
- PERFORMANCE: FAIR/POOR

GOAL 2: CAPACITY & RELIABILITY
- PERFORMANCE: GOOD/FAIR

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
- PERFORMANCE: GOOD

ANTICIPATED BENEFITS
- Reduces incident duration, traffic delays, and bottlenecks caused by operable vehicles blocking interstate travel lanes.
- Improves safety for persons involved in traffic incidents due to safe relocation from travel lanes.
- Reduces secondary incidents and safety hazards due to unexpected debris, lane closures, or slowed/stopped traffic.

REGIONAL COORDINATION AND COLLABORATION
- Build partnership among ITD and other transportation/first responders to support TIM program evaluation and strengthening.

PHASING OPPORTUNITIES
PHASE 1: Complete TIM Effectiveness Review and implement early action recommendations
PHASE 2: Build agency momentum and support for full funding and implementation of TIM programs in the mid- to long-term

GRANT FUNDING OPPORTUNITIES
- Congestion Relief Program
- Highway Safety Improvement Program
- Nationally Significant Freight and Highway Projects Program

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
- Corridor Operations Team
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Roadway Service Patrols
- Shoulder Running Transit

CAPITAL COSTS
- TIM Operational Effectiveness Review: $80,000
- Initial training/public awareness campaign: $200,000
- Static roadside signage: $30,000

OPERATING COSTS
- 2.0 FTE for ongoing training and awareness activities
- Additional TIM training, coordination, and awareness programs budget: $200,00/year
Dynamic Roadway Warning

DESCRIPTION

Dynamic Roadway Warning aims to enhance safety and alert drivers to hazardous conditions along the corridor, especially during extreme weather conditions and rain events. This can be implemented with or after roadside traveler information to increase its feasibility.

This tactic would use data relates to hazards, incidents, congestion, weather conditions, etc. collected via traffic detection sensors or video cameras. This is relatively inexpensive tactic for the high benefits it yields in reducing crash risks. The dynamic roadway warning system provides benefits in safety and multiple strategies addressed.

The location shown in the map below pinpoints a location with occasional water over the roadway and would use sensors and signs to automatically detect the water over roadway condition and alert drivers.

COMPONENTS

- **Dynamic Roadway Warning System** located near Curtis Road.
- **Road Weather Information System (RWIS)** for collecting, monitoring, and communicating real-time weather information such as temperature, wind speed, fog, precipitation, water depth, and relative pavement friction located near Curtis Road.

TIMEFRAME

NEAR TERM:

- System Planning and Implementation (Years 1–3)

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCIES:

- Ada County Highway District

BENEFIT-COST = 2.04 TO 1
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY

GOAL 2: CAPACITY & RELIABILITY

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM

GRANT FUNDING OPPORTUNITIES

- Advanced Transportation Technologies and Innovative Mobility Deployment Program
- National Highway Performance Program
- Surface Transportation Block Grant Program
- Congestion Relief Program
- Highway Safety Improvement Program
- Nationally Significant Freight and Highway Projects Program

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES

- ITD Advanced Transportation Management System
- Roadside Traveler Information
- Smart Work Zones
- Active Traffic Management

CAPITAL COSTS

- Dynamic Roadway Warning System (1 location assumed): $402,500/system, $402,200 total

OPERATING COSTS

- $3,330/location/year operations and maintenance

ANTICIPATED BENEFITS

- Reduces crashes by informing drivers or hazardous roadway conditions such as water over the roadway.
- Supports alternative route decisions.
- Grip factors provided by weather stations can link to variable message signs to alert drivers.
- Weather stations can collect, monitor, and communicate real-time weather information (pertaining to temperature, wind, fog, precipitation, water depth, and pavement friction).

REGIONAL COORDINATION AND COLLABORATION

- Update operating procedures to support decisions and configure pre-approved messages.

PHASING OPPORTUNITIES

PHASE 1: “Quick start” opportunity to address I-184 flooding and icing in the near term.

PHASE 2: Expand dynamic roadway warning systems to other regional locations if identified to be beneficial.
Real-Time Transit Information

DESCRIPTION

The real-time transit information tactic informs transit riders via information kiosks or signs (or through third party services as a reduced expense alternative) of trip updates and service alerts to assist trip planning and enhance customer experience and transit reliability. This tactic would serve Valley Regional Transit's (VRT) interregional routes.

Public information would be automated using transit data provided by existing real-time GTFS data feeds generated by VRT. Information can pertain to bus arrival time, bus location, expected travel time, and other potential information related to corridor conditions and incidents.

COMPONENTS

- **Real-Time Transit Information**
 - kiosks or signs at initial locations:
 - Ten Mile Park n’ Ride
 - Canyon/Caldwell VRT Transit Stop

- **Transit Traveler Information through Third-Party Services**
 - with Valley Regional Transit provided data.

LEAD AGENCY

- Valley Regional Transit

BENEFIT-COST = 1.21 TO 1

TIMEFRAME

NEAR TERM:

- Systems and Equipment (Years 1–3)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
POOR

GOAL 2: CAPACITY & RELIABILITY
GOOD

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
GOOD/FAIR

GRANT FUNDING OPPORTUNITIES

• Advanced Transportation Technologies and Innovative Mobility Deployment Program
• National Highway Performance Program
• Surface Transportation Block Grant Program
• Nationally Significant Freight and Highway Projects Program
• Strengthening Mobility and Revolutionizing Transportation
• State of Good Repair

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES

• Valley Regional Transit System-Wide Customer Information Strategy
• Valley Regional Transit third-party services
• Regional Video & Data Sharing

CAPITAL COSTS

• Trip Planning Software and Equipment (3 assumed): $690,000 per location, $2,070,000 total

OPERATING COSTS

• $2,000 per location

ANTICIPATED BENEFITS

• Provides information to riders on real-time bus location, arrival time, and other operational information.

REGIONAL COORDINATION AND COLLABORATION

• Develop engineering plans and designs for transit information equipment and supporting infrastructure.
Smart Work Zones

DESCRIPTION

The Smart Work Zone tactics improve safety for all motorists and construction workers by providing real-time information and warnings can alert approaching traffic. Automated Work Zone Information Systems would alert motorists before entering work zones to support alternative route decisions.

Smart work zone technologies typically focus on (a) improving traveler information and (b) warning about queuing ahead. The methods to communicate this information to travelers typically includes:

- Portable variable message signs
- Dynamic message signs
- Variable speed signs
- Connected vehicle technologies
- Smart phone applications

This tactic provides travel times, delays, and current speeds in an automated fashion, resulting in relatively low operating costs. Safety benefits accrue for travelers, construction zone workers, law enforcement personnel, and incident first responders due to increased driver compliance with regulations and speeds, leading to fewer work zone crashes.

COMPONENTS

- Smart Work Zones supported by temporary Automated Work Zone Information Systems all along I-84 and I-184.
- Queue warning systems alerting drivers of slowed traffic ahead. Information can be delivered via electronic roadside signs or using connected vehicle communications
- Variable speed signs communicating the reduced speed in the work zone
- Video analytics, which could come from cameras on-board vehicles, to identify the location of work zone equipment and make available for traveler information systems and connected vehicles
- Work zone data exchange (WZDx)\(^1\), which is a national standard that aims to make work zone data available for third party use in a nationwide standard format.
- Speed detection systems that determine current speed and length of queue to share with the public via traveler information systems.

\(^1\) https://www.transportation.gov/av/data/wzdx, accessed June 5, 2022

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCIES:

- Partnered Construction Contractors

TIMEFRAME

NEAR TERM:

- Pilot and Equipment (Years 1–3)

BENEFIT-COST = 2.53 TO 1
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY

FAIR

GOAL 2: CAPACITY & RELIABILITY

FAIR

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM

FAIR

ANTICIPATED BENEFITS

• Provides work zone information to drivers so they can divert, merge into a proper lane, or adjust speeds to match work zone conditions.

• Improves safety for travelers and construction workers.

REGIONAL COORDINATION AND COLLABORATION

• Develop standard operating procedures utilizing existing assets and potentially other tactics.

• For each work zone event, develop a traffic operations and management agreement with participating agencies and construction contractor.

PHASING OPPORTUNITIES

PHASE 1: Implement Pilot Smart Work Zones supported by equipment from other divisions and tactics. Deploy Smart Work Zones with a concept of operations per work zone.

PHASE 2: Potentially implement additional smart work zone tactics in future pilots as a proof of concept.

GRANT FUNDING OPPORTUNITIES

• National Highway Performance Program

• Surface Transportation Block Grant Program

• Congestion Relief Program

• Highway Safety Improvement Program

• Nationally Significant Freight and Highways Projects Program

• Strengthening Mobility and Revolutionizing Transportation

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES

- ITD Advanced Transportation Management System
- Regional Video & Data Sharing
- Roadside Traveler Information (DMS)
- Corridor Operations Team
- Enhanced Detour Plans
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Roadway Service Patrols
- Active Traffic Management

CAPITAL COSTS

• Deployment: $310,500 per work zone event

OPERATING COSTS

• $3,360/location/year operations and maintenance
Traffic Signal Management and Operations

DESCRIPTION

This tactic uses Automated Traffic Signal Performance Measures (ATSPMs) combined with incident detour plans to enable traffic signal operating agencies to proactively respond to changing traffic conditions. ATSPMs provide detailed information about the effectiveness of traffic signal operations and enables traffic signal operators to adjust signal timings to best match the traffic conditions. Ultimately, this tactic improves the safety and reliability of arterial traffic diverting around incidents on the Interstate corridors.

This tactic can use a combination of data from detectors at the traffic signal and third party data from connected vehicles. This tactic is relatively inexpensive because the region already has communications to the traffic signals and detection that could be used to produce the ATSPMs.

Although the traffic signal management and operations tactic has a low benefit-cost ratio due to the infrequency of events or incidents, the overall system provides information useful during normal operating conditions that enhances the overall benefit. It can enhance the capacity and reliability of the corridor during events or incidents.

COMPONENTS

- **Region-Wide Traffic Signal Management** for prioritizing certain traffic flow around high-incident locations during peak hours or severe weather events that could reduce incident response times.

- **Vehicle Detection** may require additional detection at traffic signals.

- **Connected Vehicle Data** requires additional ongoing fees to provide the data.

LEAD AGENCIES

- Idaho Transportation Department (for owned/operated signals)
- Ada County Highway District (for owned/operated signals)
- City of Nampa (for owned/operated signals)

TIMEFRAME

NEAR TERM:

- Agreements (Year 1)
- Data Access and Integration (Years 2–3)

BENEFIT-COST = 0.68 TO 1
GOAL 1: SAFETY

GOAL 2: CAPACITY & RELIABILITY

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM

PERFORMANCE COMPARED TO THE PROJECT GOALS

ANTICIPATED BENEFITS

- Informs the traffic signal operators of the effectiveness of signal timings. With this information, the Agency can change signal timings to best match the condition and reduce traffic signal delay and improve safety.
- Helps manage congestion during planned events or significant incidents.
- Reduces delays on parallel arterials due to lane-blocking incidents on the Interstate.

GRANT FUNDING OPPORTUNITIES

- Advanced Transportation Technologies and Innovative Mobility Deployment Program
- National Highway Performance Program
- Congestion Relief Program
- Nationally Significant Freight and Highway Projects Program
- Strengthening Mobility and Revolutionizing Transportation
- State of Good Repair

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

REGIONAL COORDINATION AND COLLABORATION

- Integrate detection systems into backend software.
- Create operating procedures to outline circumstances, routes, and timing that traffic signal synchronization would be used (events, detours, etc.).
- Train traffic signal engineering staff.

RELATED INITIATIVES

- ITD Statewide Traffic Management System Software Replacement
- ITD Advanced Transportation Management System
- City of Nampa Traffic Management Center
- Smart Work Zones

CAPITAL COSTS

- Traffic Signal Management Equipment (3 locations assumed): $230,000 per site, $690,000 total

OPERATING COSTS

- $1,000/year per signal maintenance

PHASING OPPORTUNITIES

PHASE 1: Pilot deployment can focus on a specific corridor.

PHASE 2: Expand traffic signal management and operations. Train traffic signal engineering staff and signal timing implementation procedures for real-time responses.
Active Traffic Management

DESCRIPTION

This tactic improves the efficiency and safety of the transportation system by detecting changing conditions and automatically displaying information including the variable speed limits, queue warning, and dynamic lane control messages. Automation of device operations can be integrated into ITD’s future traffic management system.

This tactic has a relatively high cost but can be combined with other tactics for cost savings such as Dynamic Roadway Warning and Roadside Traveler Information. The Active Traffic Management tactic would benefit from a public education campaign before the system is activated. This would provide benefits to regional operations, incident and event management, and work zones management.

COMPONENTS

- Active Traffic Management Systems deployed at 11 locations:
 - Between 11th Avenue and Garrity Blvd exit
 - Between Robinson Rd overpass and McDermott Rd
 - Between McDermott Rd and Black Cat Rd overpass
 - Ten Mile Rd exit
 - Between Ten Mile Rd exit and Meridian Rd exit
 - Between Meridian Rd exit and Locust Grove Rd overpass
 - Between Eagle Rd exit and Cloverdale Rd overpass
 - Between Cloverdale Rd overpass and Five Mile Rd overpass
 - Between Franklin Rd exit and Cole Rd overpass
 - Between Cole Rd overpass and Emerald St overpass
 - Between Emerald St overpass and Curtis Rd exit

- Central Active Traffic Management Software and Equipment

BENEFIT-COST = 0.73 TO 1

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCY:

- State Comm
- Ada County Highway District

TIMEFRAME

NEAR TERM:

- Software and Field Equipment (Years 1–6)
Performance Compared to the Project Goals

<table>
<thead>
<tr>
<th>Goal</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1: Safety</td>
<td>Fair/Good</td>
</tr>
<tr>
<td>Goal 2: Capacity & Reliability</td>
<td>Fair/Poor</td>
</tr>
<tr>
<td>Goal 3: Integrated Transportation System</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Anticipated Benefits
- Provides real-time information to drivers for advisory speeds, queue warnings, and lane closures.
- Reduces rear-end crashes approaching congested areas caused by both recurring and non-recurring events.

Grant Funding Opportunities
- Advanced Transportation Technologies and Innovative Mobility Deployment Program
- National Highway Performance Program
- Surface Transportation Block Grant Program
- Congestion Relief Program
- Highway Safety Improvement Program
- Nationally Significant Freight and Highway Projects Program
- Strengthening Mobility and Revolutionizing Transportation

Strategies Addressed
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

Related Initiatives
- ITD Advanced Transportation Management System
- Regional Video & Data Sharing
- Roadside Traveler Information (DMS)
- Dynamic Roadway Warning
- Interoperable Communications Procedures/Operations Playbook (SOP)
- Event Management
- Smart Work Zones

Capital Costs
- Central Active Management Software and Equipment: $1,667,500
- Systems including overhead and roadside locations (11 locations total): $14,679,750 total

Operating Costs
- $81,250/year for Central Active Traffic Management
- $310,000/year for Field Equipment

Regional Coordination and Collaboration
- Share status of variable speed and DMS messages with partner agencies.
- Determine agency responsibilities per Active Traffic Management tactic (for variable speed limits, queue warning, and dynamic lane control).
- Create operating procedures of Active Traffic Management systems to direct operations during peak hour or under certain circumstances (incidents, weather events, planned events, work zones).

Phasing Opportunities
Active traffic management tactics can be implemented long term, on an ongoing incremental basis, or pilot basis.
Event Management

DESCRIPTION

This tactic aims to improve traffic management and maintain reliability during large events using a pre-established plan. Event management is a proactive and coordinated process involving transportation, law enforcement, and event venue agencies. These partners work together to pre-plan and execute programs to address the unique travel patterns and congestion that can arise with major events like sports, festivals, and concerts.

Event management can be supported by portable equipment (e.g. message signs) or permanent equipment (e.g. traffic signal systems) at areas with frequent events to smooth traffic flow.

The B/C ratio of this tactic is low due to the infrequency of events. This would promote interagency coordination, event management coordination, and event plan preparation.

COMPONENTS

- Event Transportation Management Systems for critical event locations and additional locations, along with connecting interstate roadways and ramps, that may also justify a pre-planned event management response:
 - Ford Idaho Center in Nampa
 - Albertsons Stadium in Boise

PARTICIPATING AGENCIES:

- City of Nampa
- Idaho Transportation Department
- Ada County Highway District
- Ford Idaho Center Management
- Law Enforcement
- Venue Operators

TIMEFRAME

NEAR TERM:

- Agreements and Plans (Years 1–3)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY

GOAL 2: CAPACITY & RELIABILITY

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM

POOR

GOOD/FAIR

FAIR/POOR

ANTICIPATED BENEFITS

- Formulates specific response plans for major recurring event and construction scenarios in the Treasure Valley
- Improved coordination across multiple agencies involved in event traffic management
- Leverages ITS assets and personnel for a new use case, beyond traditional peak-period commuting and incident scenarios.

REGIONAL COORDINATION AND COLLABORATION

- Corridor Operations Team could oversee the I-84 transportation management response for events.
- Develop standard operating procedures utilizing existing assets and potentially other tactics.
- For each event, develop a traffic operations and management agreement with participating agencies and event vendor.

PHASING OPPORTUNITIES

Event management tactics can be implemented on an ongoing incremental basis or pilot approaches.

GRANT FUNDING OPPORTUNITIES

- Congestion Relief Program
- Nationally Significant Freight and Highway Projects Program

STRATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES

- Corridor Operations Team Tactic
- Enhanced Detour Plans Tactic
- Interoperable Communications Procedures/ Operations Playbook (SOP) Tactic
- Roadway Service Patrols Tactic

CAPITAL COSTS

- Development of Event Management: $310,500 per work zone event
Shoulder Running Transit

DESCRIPTION

This tactic aims to improve transit performance under congestion conditions by allowing VRT transit buses to use existing hard shoulders to bypass slowed or stopped traffic on the freeway (e.g., when freeway speeds drop below 35 MPH).

This tactic addresses the travel time reliability challenge of VRT intercounty express routes using the I-84 corridor. Congestion delays significantly affect bus schedules and inconvenience passengers. Shoulder Running Transit provides a travel time advantage that may make express buses a more attractive commuting option compared to driving.

Costs are relatively low where the shoulder is sufficiently wide without needing significant modifications but requires real-time coordination and drivers who are trained to expect bus operations within the shoulder under certain conditions.

Shoulder Running Transit can be integrated with future ramp metering to hold oncoming traffic at ramp meter positions, thereby creating a gap in merging traffic that allows shoulder-running buses to pass.

COMPONENTS

• Shoulder Running Transit for Valley Regional Transit Intercounty bus routes (40, 42, 43, and 45) at segments:
 › I-184 from South 13th St in downtown Boise to the “Y” junction with I-84 (Exit 50)
 › I-84 from the “Y” junction (Exit 50) with I-184 to Franklin Road, Caldwell (Exit 29)
 › I-84 from the “Y” junction in the east to Caldwell. This includes the most frequently congested segment of I-84 between Exits 42 and 46, which could be a priority segment for implementation
• Roadside signs to support shoulder running transit and indicate beginning and end of segments.

LEAD AGENCY
• Valley Regional Transit

PARTICIPATING AGENCY:
• Idaho Transportation Department
• COMPASS

TIMEFRAME
NEAR TERM:
• Pilot (Years 1–3)
PERFORMANCE COMPARED TO THE PROJECT GOALS

GOAL 1: SAFETY
POOR

GOAL 2: CAPACITY & RELIABILITY
FAIR

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM
POOR

ANTICIPATED BENEFITS

• Provides competitive travel time advantage for intercounty transit routes, without significant new investments in roadway infrastructure.

• Use of professional bus drivers simplifies implementation and reduces risk compared to general purpose shoulder running schemes.

REGIONAL COORDINATION AND COLLABORATION

• ITD permission and pre-approved conditions for running transit on shoulders (ex. congested traffic conditions, 35 mph corridor speed, shoulders not in use for incident clearance).

• Implemented on a trial basis before committing to long term implementation.

CAPITAL COSTS

• Implementation Planning: $100,000
• Operator Training and Public Outreach: $50,000
• Roadside Signage and Striping: $75,000
• Pilot Project Evaluation: $30,000

STRAATEGIES ADDRESSED

- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES

• Ramp Metering Tactic
• On-Ramp Configuration and Auxiliary Lanes Tactic
• Interoperable Communications Procedures/Operations Playbook (SOP) Tactic

GRANT FUNDING OPPORTUNITIES

• Congestion Relief Program
• Nationally Significant Freight and Highway Projects Program
• State of Good Repair

PHASING OPPORTUNITIES

PHASE 1: Implement and evaluate pilot Shoulder Running Transit with signage, lane striping, and real-time coordination.

PHASE 2: Deploy Shoulder Running Transit at rest of locations.
On-Ramp Configuration and Auxiliary Lanes

DESCRIPTION

This tactic aims to improve corridor efficiency regarding operations and safety through ramp and auxiliary lanes re-configurations. Improvements involve auxiliary lanes and new shoulders. Interchange Modification Reports will be completed for both Meridian Road and Eagle Road Interchanges.

Due to engineering requirements and capital improvements, this tactic is viewed as medium- to long-term implementation.

COMPONENTS

- On-Ramp Configuration and Auxiliary Lanes construction at three interchanges:
 - Ten Mile Road Interchange (Exit 42)
 - Meridian Road Interchange (Exit 44)
 - Eagle Road Interchange (Exit 46)

LEAD AGENCY

- Idaho Transportation Department

PARTICIPATING AGENCIES:

- Ada County Highway District
- City of Nampa
- City of Caldwell

TIMEFRAME

NEAR TERM:

- Engineering Design
 (Years 1–2)
GOAL 1: SAFETY

GOAL 2: CAPACITY & RELIABILITY

GOAL 3: INTEGRATED TRANSPORTATION SYSTEM

PERFORMANCE COMPARED TO THE PROJECT GOALS

GRANT FUNDING OPPORTUNITIES
- Congestion Relief Program
- Nationally Significant Freight and Highway Projects Program
- State of Good Repair

STRATEGIES ADDRESSED
- Traffic Management
- Incident & Emergency Management
- Road Weather Management
- Public Transportation
- Work Zone Management

RELATED INITIATIVES
- Ramp Metering
- Shoulder Running Transit

CAPITAL COSTS
- Ramp re-configuration (3 interchange, may include edgeline markings, or auxiliary lanes or new shoulders): TBD with the ITD auxiliary lane project

ANTICIPATED BENEFITS
- Reduces number of crashes.
- Improves merging and weaving movements.

REGIONAL COORDINATION AND COLLABORATION
- Develop engineering plans and designs (for edgeline markings, or improved lighting conditions).

PHASING OPPORTUNITIES
PHASE 1: Prioritize locations with relatively low engineering or cost barriers to implementation to serve as a proof-of-concept.

PHASE 2: Expand on-ramp configuration and auxiliary lanes to rest of locations.