CAMBRIDGE SYSTEMATICS

SNOW AND FLOODS AND FIRES, OH MY! - A CASE FOR REGIONAL TRANSPORTATION RESILIENCE

presented to

COMPASS Educational Series Participants

presented by

Suseel Indrakanti, AICP

Principal, Practice Lead – Resilience and Sustainability

Cambridge Systematics

May 29, 2024

Cambridge Systematics

Over 50 Years of Insights through Innovation

- Founded in 1972
- 200+ staff in 12 nationwide offices
- Independent, employee owned

Resilience and Sustainability

Presentation Overview

- Risk and Resilience Basics
- Assessing Risk and Resilience
 Assets and Hazards
 - » Examples
- Integrating into Regional Planning
- Recap and Q&A

Discussion Objectives

THE BASICS

N 19 23 5

a arts

1998

12. R. 1.

00.54

11

11

Barner du

1. What is a word or phrase that defines what resilience means to you?

10 responses

 Vorgeound
 Impenetrable weather

 being prepared

 ability to bounce back

 adaptability

 minimizing disruption

Login to edit this Menti

Impacts Across the US

Interstate 45 inundated during Hurricane Harvey, August 2017.

Interstate 80 in Vacaville, Calif., Aug. 19, 2020. Source: AP Photo, Courthouse News.

Rain, warm temperatures and snowmelt-induced flooding across the Midwest Flooding, 2019 (Nebraska)

Regional Transportation Impacts and Disruptions

allevregionaltransitora 208

zioxone Re

ic Overclos

OXONE

Thunderstorm – June 2023 – Source: Idaho Statesman

Understanding and Defining Resilience

- Resilience or resiliency is the <u>ability to anticipate, prepare for,</u> and adapt to changing conditions and withstand, respond to, and recover rapidly from disruptions (FHWA Order 5520)
- Risk: The positive or negative effects of uncertainty or variability upon agency objectives. (23 CFR 515.5)

RESILIENCE

ASSESSING RISK AND RESILIENCE

Frameworks for Assessment

Source: Cambridge Systematics – Framework for Development of Resilience Improvement Plans

Source: NCHRP Report 1014: Developing a Highway Framework to Conduct an All-Hazards Risk and Resilience Analysis

Assessing Vulnerabilities, Risk, and Resilience

Definition & Objectives

Hazard Identification & Asset Characterization

Identifying Resilience Needs and Determining Risk Tolerance

Management & Integration Decisions

Data Availability & Suitability

Source: Cambridge Systematics – Framework for Development of Resilience Improvement Plans

2. Why is "planning for resilience" important to the residents of treasure valley?

14 responses

Good planning	We are growing	Equity	Financial responsibility
Predictability	To ensure that we have safe and accessible	\$\$\$	It keeps goods and services flowing.
We have floods and fires	options in case of emergencies.	The growth in the area is faster than how the	Life continues. Work
Saves money on long	Continued commerce	respond.	drounds needed.
run	l'm an emergency you		

Login to edit this Menti

ASSETS AND HAZARDS

Assets – Tiering Approach

TIER 1	TIER 2	Essential Facilities
Disruption will cause a regional Impact.	Disruption impact is localized or minimal	Integrated into criticality score of Tier 1 assets
Roads, Bridges and Bus Routes	Railroad Lines, County Trails, Other Transportation Facilities, Dams and Levees, Culverts, Stormwater Infrastructure	Schools, Shelters, Hospitals, Fire Stations,
Exposure, Sensitivity, Adaptive Capacity	Exposure Only	Police Offices, Emergency Response Center, Substations, Other Transportation Facilities.

Source: Critical Transportation Infrastructure Vulnerability Assessment, Ulster County, NY, Cambridge Systematics

Example Hazards

Source: Indianapolis MPO Resiliency Snapshot, Cambridge Systematics

Hazards – Treasure Valley – Current and Future

Table 2-3. Hazards of Concern Assessed by Local Jurisdiction													
Jurisdiction	Avalanche	Drought	Earthquake / Seismic	Flood (includes dam failure)	Landslide	Severe Storms (includes wind, tornado)	Volcano	Wildfire					
Ada County	-	\checkmark	V	\checkmark	V	Н	1	V					
Adams County	-	-	V	N	V	Н	-	Н					
Bannock County	\checkmark	-	\checkmark	\checkmark	\checkmark	Н	-	Н					
Bear Lake County	\checkmark	-	\checkmark	\checkmark	\checkmark	Н	-	\checkmark					
Benewah County	-	-	\checkmark	Н	\checkmark	Н	-	Н					
Bingham County	\checkmark	Н	\checkmark	Н	\checkmark	Н	-	Н					
Blaine County	\checkmark	Н	\checkmark	Н	\checkmark	\checkmark	-	Н					
Boise County	\checkmark	-	\checkmark	Н	Н	\checkmark	-	\checkmark					
Bonner County	\checkmark	-	\checkmark	\checkmark	\checkmark	Н	-	Н					
Bonneville County	\checkmark	\checkmark	\checkmark	Н	\checkmark	Н	-	Н					
Boundary County	\checkmark	\checkmark	Н	Н	\checkmark	Н	-	Н					
Butte County	-	-	Н	-	-	-	-	-					
Camas County	V	Н	Н	Н	V	Н	_	Н					
Canyon County	-	\checkmark	Н	\checkmark	V	Н	-	\checkmark					

 $\sqrt{}$ = hazard assessed H = assessed as high hazard - = no assessed hazard Source: IOEM 2023

Source: Idaho Statewide Hazard Mitigation Plan

Hazards – Local (Ada County)

Hazards

- » Dam/canal failure
- » Drought
- » Extreme weather
- » Flood
- » Landslide
- » Volcano (ash fall)
- » Wildfire.

Hazards – Regional and Local Resources

- Hazard and Climate Resilience Institute (HCRI) – Boise State University
 - » Overview
 - » How to prepare
 - » Local Resources
 - » How is this hazard impacted by a changing climate?

Regional Hazard Information

Source: Boise State University

ASSET CHARACTERIZATION

Asset Characterization – Criticality - Example

Health and Safety Importance

Access to Dam (1)
Access to Fire or Police Stations (1)
Access to Hospitals (1)
Access to Schools (1)
Access to Emergency Shelters (1)
Access to Power plants (1)
Access to Transit Centers (1)
Access to Airport (1)
Access to Seaports (1)
Access to Maintenance Facilities(1)

Criticality Scoring Approach – Example

Factor	Max Score	Scoring Method	Score	Description							
		Local	1								
Functional Class	-	Major Collector	2	Roadway functional classification (UCTC) combining urban and rural roadway							
	4	Minor Arterial	3	classes.							
		Principal Arterial	4								
		0 facilities in a ½-mile distance	0								
Access to Essential Facilities	2	1 to 2 facilities in a ½-mile distance	1	Number of Essential Facilities within a ½-mile distance from the road							
	5	3 to 5 facilities in a ½-mile distance	2	(distance calculated is not network-distance, but crow-fly distance)							
		>5 facilities in a ½-mile distance	3								
Evacuation/Detour Route	1	1 if Yes, 0 otherwise	0-1	Whether the roadway is an evacuation route							
Transit Corridor	1	1 if Yes, 0 otherwise	0-1	Whether the roadway is a transit corridor							
		<=100;	1								
Population Density	3	101 – 200;	2	Population density normalized by network density to avoid any disproportionate impact to rural areas/assets							
		> 201;	3								
		0 - 10%	1								
Equity Areas	3	11% - 20%	2	Based on the proportion of population with 3+ risk factors (<u>Census</u> Community Resilience Estimates (CRE) Data							
		21 % - 35%	3								
Maximum Total Score	15										

Source: Critical Transportation Infrastructure Vulnerability Assessment, Ulster County, NY, Cambridge Systematics

ASSESSING RISK AND RESILIENCE

A risk -based assessment should consider both the probability or likelihood that transportation assets will experience potential impacts due to disruptions, and the consequences of those impacts.

Vulnerability

What is vulnerability

- Relative susceptibility
- Specific to hazards and assets pairs
- Why consider vulnerability?
 - Help identify resilience needs

VULNERABILITY IS A FUNCTION OF EXPOSURE, SENSITIVITY, AND ADAPTIVE CAPACITY

Elements of Vulnerability – Sample Indicators

Moderate Criticality **High Criticality** Moderate

High Risk

Moderate Criticality

Moderate Risk

Moderate Criticality

Low Risk

Prioritization

High Risk

Low Criticality

Moderate Risk

Low Criticality

Low Risk

Low Criticality

Low

High

Moderate

Low

Risk

30

High

High Risk

High Criticality

Moderate Risk

High Criticality

Low Risk

The 4Rs of Resilience

Robustness

the ability to withstand disaster forces without significant degradation or loss of performance.

Redundancy

the extent to which the systems can satisfy functional requirements if significant degradation or loss of functionality occurs.

Resourcefulness

the ability to diagnose and prioritize problems and to initiate solutions by identifying and mobilizing resources;

Rapidity

the capacity to restore functionality, contain losses, and avoiding disruptions.

⁻unction

Source: Original graphic; based on Simonovic, S. P., and Arunkumar, R. (2016), Comparison of static and dynamic resilience for a multipurpose reservoir operation, Water Resour. Res., 52, 8630-8649, doi:10.1002/2016WR019551.

Flat Tire Analogy

4. List some known areas/facilities that are impacted by these stressors from your lived/recent experiences.

16 responses

Sidewalks	Foothills = fires	I-84	Greenbelt flooding
			needing
Greenbelt		Bridges	
	Greenbelt	crossing the	Snow on
	Login to edit	this Menti	

 What core/basic needs would be impacted due to the disruptions we discussed?
 (Examples: access to groceries, medical appointments)
 responses

Emergency	Military	Evacuations	Access to
responders	functions		schools,
			access to
		Fire agency	tourist spots
	Login to ed	It this Menti	

INTEGRATION INTO PLANNING OR AGENCY BUSINESS PROCESSES

Incorporation into Regional Planning

Regional Project Prioritization – Resilience

			SAFETY SCORING									S	YSTEM PR	RESER	VATION	SCORIN	G		CAPACITY MANAGEMENT SCORING												ECONOMIC VITAILITY SCORING							
Project Name	Estimated Project Cost (2018 Dollars)	Annual Average Daily Traffic	Safety	EPDO	EPDO per 100,000,000 vehicles (Risk)	Cost per EPDO (Cost/Benefit)	Risk Group	Cost/Benefit Group Project Impact Group	Top 200 Crash Location (Total EPDO) HSIP Cluster (Total EPDO)	HSIP Bicycle Cluster (Bike-involved EPDO) HSIP Pedestrian Cluster (Ped-involved EPDO)	System Preservation and Modernization	Cost per Index Point (000s)	Percent Resilience Related	Structurally Deficient Bridges	Weighted IRI	Total Project Roadway-miles	Total Project Lane-miles	Weighted Deficiency index	Capacity Management and Mobility (Autos)	MPO-Identified Express Highway Bottleneck Location	MPO-identified Arterial Bottleneck Location	Capadity Management and Mobility (Buses)	Regional and Local Bus Trips (Daily)	Total Regional Bus Trips (Daily) Total Local Bus Trips (Daily)	Number of Regional Bus Routes Served	Number of Local Bus Routes Served	Capacity Management and Mobility (Peds/Bikes)	Nonmotorized Total	Pedestrian Improvements Bicycle improvements	Improves Transit Access	Economic Vitality	Total points	Mostly Serves Existing Area of Concentrated Development	Facult serves Existing Area of concentrated Development. Facilitates New Development	Provides Vehicle Acess to Target Development Area	Provides Transit Acess to Target Development Area Provides Ricycle Acess to Target Development Area	Provides Pedestrian Acess to Target Development Area	
Route 60 Improvements (Medford, Arlington) est	\$40,000,000	20,400	high	3360	16637	\$11,905	1	1 2	2	5	high	\$1	2 0.3		252	8.2	16.3	3374	medium		moderate	high	508	50)8	8 h	igh	4	2 1	1	medium	2				1	1	
Improvements to Sweetser Circle (Routes 16/99) (Everett) est	\$22,000,000	45,000	bigh	641	1439	\$34,321	4	1 2			high	\$1	8 0	1	274	1.7	5.4	1237	medium		moderate	high	497	45	97	8 п	nedium	1	1		high	7	2	1	1	1 1	1	
Widening on Route 1 (Malden, Revere, Saugus)	\$172,500,000	115,000	high	2063	1812	\$83,616	1	2 1			medium	\$3	4 0.3		191	8.7	34.8	5081	high	severe		high	168	168	4	m	nedium	2	1 1		medium	4	2	1	1			
Southeast Expressway Modification (Southampton) (Boston)	\$143,750,000	225,000	high	4662	2093	\$30,834	1	1 1		1	medium	\$59	9 0		121	4.5	31.8	2417	high	severe		high	464	250 21	4 6	4 k	w				medium	2	2					

Source: Boston MPO, Evaluated Major Infrastructure Projects for the Destination 2040 LRTP

RECAP

Discussion Objectives

Thank You!

Suseel Indrakanti, AICP Principal and Practice Lead – Resilience and Sustainability <u>sindrakanti@camsys.com</u> Cambridge Systematics

Contact Information

Major Disasters and Disruptions – US and Idaho

U.S. 2023 Billion-Dollar Weather and Climate Disasters

This map denotes the approximate location for each of the 28 separate billion-dollar weather and climate disasters that impacted the United States in 2023.

