

## COMPASS

COMMUNITY PLANNING ASSOCIATION
of Southwest Idaho

HOV/ Park- and-Ride Study Findings and Recommendations

Report Number 05-2012

## Report of HOV/Park-and-Ride Study Findings and Recommendations

## Purpose of the Study

In 2011, the Community Planning Association of Southwest Idaho (COMPASS) conducted a study to research how a high occupancy vehicle (HOV) transportation system, including park-and-ride facilities, would improve mobility in the Treasure Valley, identify criteria for evaluating HOV options and when HOVs would be appropriate additions to a transportation system, and identify "triggers" for implementing an HOV system, including park-and-ride facilities. The study researched criteria for evaluating HOV options and developed recommendations regarding further work on HOV/park-and-ride systems.

The main tasks were:

- Research other areas with recent implementation of HOV transportation corridors and systems to identify characteristics/parameters of successful, as well as failed, HOV systems (see the summary of nine of the systems in Tables 1 and 2 , pages $10-20$ );
- Identify criteria for HOV transportation corridors and systems, support facilities, and programs;
- Describe possible HOV corridors and support facilities and programs in Ada and Canyon Counties; and
- Provide a summary of study results and recommendations for further work on HOV/park-and-ride facilities and programs.

The COMPASS study did not assess the feasibility of any particular corridor in the Treasure Valley.

## Research Findings

Characteristics/parameters of successful, as well as failed, HOV systems vary greatly, depending on local conditions and goals for an HOV system. The common goals include a reduction in travel time and reduction in congestion. Common "trigger" characteristics in the researched HOV systems and plans center around:
o "Adequate" congestion
o Carpool/vanpool/transit volumes
o Major employment center(s)/destinations accessible via HOV system
o Travel time savings

The assessment of these and other "triggers" in the Treasure Valley requires adequate information about their current status and a forecast of their future trends. For example, the geography of the region (i.e., the Boise River and the foothills) includes barriers that are likely to concentrate development and constrict travel, and may create more congested corridors in the future.

While identification of major regional employment centers and other trip destinations is easy, the need for technical analysis, including feasibility and engineering analysis, to assess how an HOV system could access those employment centers/destinations is necessary.

In 2010, about 4\% of lane miles in the Treasure Valley were highly congested at peak commute times - 6:30am to 8:30am and 4:00pm to 6:30pm. (Data collected on about 600 lane miles - 300 east or northbound, 300 west or southbound. See Figures 1 and 2 on pages 8 and 9.) However, road construction to widen sections of Interstate-84, the primary east-west corridor in the valley, has been ongoing since 2007. Therefore, waiting for the construction to be completed and the traffic patterns to stabilize before re-evaluating congestion and estimating future trends of the congestion is recommended.

The most recent I-84 vehicle occupancy (carpool) information is from a 2005 off-ramp vehicle occupancy survey. This information should be updated after the I-84 construction has been completed to reflect the "post-construction" travel patterns. Attachment 2 (page 7) is the proposed scope of work for a vehicle occupancy survey.

COMPASS conducted a vanpool survey in 2010 to gather information also about the use of park-and-ride lots (report available at http://www.compassidaho.org/documents/prodserv/reports/VanpoolSurveySummary.
pdf). There are efforts by ACHD and Valley Regional Transit to establish more park-and-ride lots to encourage carpooling and vanpooling. This is an important step toward increasing HOV volume that at some point in the future could occupy a dedicated lane.

According to current Idaho law Section 49-1412A (http://www.legislature.idaho.gov/idstat/Title49/T49CH14SECT49-1421A.htm), implementing an HOV facility in the Treasure Valley would be illegal. During the 2011 legislative session, House Bill 215 proposed to remove the provision that HOV lanes shall apply only in counties with a population less than 25,000 , according to the most recent census, and where the county includes a resort city. House Bill 215 died in committee.

In February 2011, Idaho Transportation Department, District 3 released a report Interstate 84/184 - High Occupancy Vehicle Lanes Stage 1: Feasibility Study. ${ }^{1}$ This preliminary stage 1 feasibility study was done to determine the potential feasibility of HOV facilities along the Interstate-84 corridors in Ada and Canyon Counties. The preliminary findings of the study indicate that by 2035 there would likely be enough congestion for an HOV lane on I-84. An HOV system appears to save overall travel time, and according to the report commuters between Canyon and Ada Counties would be likely to use an HOV lane requiring $2+$ persons per vehicle. However, providing an HOV facility through the WYE Interchange or along I-184 appears to not be cost effective relative to travel time savings.

## Recommendations

COMPASS staff met with the pertinent member agencies to review the research findings and recommendations for further work. The following summarizes the recommendations based on the research findings:

1. Expand the scope of further study and analysis into transportation demand management (TDM) more broadly. TDM can include: vanpool, carpool, bus routes, intelligent transportation system (ITS) projects, parking policies, land

[^0]use policies, HOV lanes, and high-occupancy toll (HOT) lanes. The analysis should include identifying trigger points for TDM measures (e.g., level of congestion, carpool use, vanpool use, transit investment in commuter routes and ridership).
2. Gain a better understanding of the federal requirements for planning of transportation improvements related to an ozone non-attainment designation.
3. Conduct a vehicle occupancy survey to update available information (see scope of work details in Attachment 2 below).
4. Update regional ITS architecture and incorporate into ongoing COMPASS activities.
5. Continue work on the following tasks to address needs identified by reviewing agencies and to lay ground work for more comprehensive travel demand management:
a. Develop recommendations for a regional park-and-ride system and incorporate site development criteria.
b. Document Congestion Management System (CMS) processes so they are institutionalized and consistent over time to allow for data comparisons.
c. Enhance the annual CMS report to include more detailed tracking and performance measures. The ultimate goal is to develop and maintain an operations and management strategies report to better fulfill federal requirements.
d. Update the 2005 Congestion Management System Plan²:
i. Review and update data collection process.
ii. Add data collection routes.
iii. Review and update evaluation process (what makes a route highly congested or not.)
iv. Document how CMS has been incorporated into TIP prioritization process (projects get points if on congested routes.)
v. Collect information about recent ITS projects (for example, signal timing before/after.)

[^1]vi. Include continuous travel time data currently collected on I-84; outline how to incorporate the data in annual CMS report / monitoring process.
vii. Outline a process to incorporate the transit system into CMS. e. Research IDAS software (allows for testing ITS and operational improvements.)


#### Abstract

Summary The HOV/Park-and-Ride study provides direction for further work and points out data needs and appropriate timing for data collection. The research findings also suggest that the initial scope of this study was too narrow; a more comprehensive look at travel demand management strategies will provide information about more options that may be better suited for the region to achieve future travel time savings and reduction in congestion.


## RE: Recommendations for COMPASS Projects for FY12 and Beyond

TO: Matt Stoll, Executive Director
FROM: Liisa Itkonen, Principal Planner

The following are projects recommended to be included in future COMPASS work programs.

1) Schedule vehicle occupancy survey for FY2012 (see scope of work details in Attachment 2 below)
a. Add to UPWP under Congestion Management Systems ( 842 CMS)
b. Request direct dollars for data collection
c. Add to data inventory (vanpool survey, 2010 Census, 2010 ridership survey, household travel survey collection).
2) Update regional ITS architecture and incorporate into annual COMPASS activities as part of task 842 CMS.
3) Develop a Transportation Demand Management task for FY2013 UPWP.
4) Depending on when EPA designates a new ozone standard, develop a work program to address pertinent requirements as needed.

Attachment 2.
Vehicle Occupancy Survey Scope of Work - Draft/ Preliminary for FY2012
Task 0: Purpose and Need: Collect vehicle occupancy data at select I-84 on- and off-ramps during the morning and evening peak hours. Data are necessary to begin to understand I-84 travel market.
Responsibility: COMPASS staff
Direct dollars: \$0
Task 1: Identify Locations and collect Data

|  | Location | AM: 6AM to 8AM | PM: 4PM to 6:30PM |
| :---: | :--- | :---: | :---: |
| 1 | Exit 26/SH 44 | EB On-ramp | WB Off-ramp |
| 2 | Exit 29/ Franklin Rd | EB On-ramp | WB Off-ramp |
| 3 | Karcher IC | EB On-ramp | WB Off-ramp |
| 4 | Franklin Blvd IC | EB On-ramp | WB Off-ramp |
| 5 | Garrity Blvd IC | EB On-ramp | WB Off-ramp |
| 6 | Ten Mile Rd IC | EB On-ramp | WB Off-ramp |
| 7 | Meridian Rd IC | EB Off-ramp | WB Off-ramp |
| 8 | Eagle Rd IC | EB Off-ramp | WB Off-ramp |
| 9 | Orchard St IC | EB Off-ramp | WB On-ramp |
| 10 | Vista Ave IC | EB Off-ramp | WB On-ramp |
| 11 | Broadway Ave IC | WB On-ramp |  |

Note: If it is necessary to collect data for both directions at both peak hours, , it will be necessary to double the number of persons for data collection and direct dollars.
Responsibility: COMPASS staff as project manager, hire temp agency staff or BSU students (up to 12 persons) to collect data
Direct dollars: \$2000
Task 2: Collect Traffic Counts
Road tubes (portable traffic counters) will need to be placed on each ramp on the day data are collected to allow for statistical evaluations and quality control. Each location will require 4 to 6 counters; therefore, this will likely take two private companies given the inventory. COMPASS may also request assistance from the Idaho Transportation Department and local highway districts.

Responsibility: COMPASS, with assistance from the Idaho Transportation Department, Ada County Highway District, City of Caldwell, City of Nampa, and consultants Direct dollars: $\$ 300$ to $\$ 500$ per counter location ( $\$ 14,100$ to $\$ 23,500$ )

Task 3: Enter Vehicle Occupancy Data and Traffic Counts; Quality Check Data
Responsibility: COMPASS staff
Direct dollars: \$0
Task 4: Analyze Vehicle Occupancy Data
Responsibility: COMPASS staff
Direct dollars: \$0
Task 5: Document Process and Develop Final Report
Responsibility: COMPASS staff
Direct dollars: \$0
Estimated total direct dollars: $\$ 16,100$ to $\$ 25,500$
Estimated COMPASS workdays: 80 - includes staff time to assist in data collection


Figure 1. 2010 Congestion Management System, East and Northbound Direction.


Figure 2. 2010 Congestion Management System, West and Southbound Direction.

Table 1. HOV Study Matrix Summary - Part 1: Nashville, Houston, Denver, Los Angeles

| Parameters | Nashville | Houston | Denver | Los Angeles |
| :---: | :---: | :---: | :---: | :---: |
| Trip distance | There are four HOV facilities <br> I-65 North - 4.8 miles <br> I-65 South - 12.9 miles <br> 1-40 East - 10.2 miles <br> I-24 South - 18.2 miles | There are 6 HOV facilities: <br> 1. Katy (I-10 W)--13 miles <br> 2. North (I-45 N)--13.5 miles <br> 3. Gulf (I-45 S $)--12.1$ miles <br> 4. Northwest (US290)-- <br> 13.5 miles <br> 5. Southwest (US 59 S )-- <br> 12.2 miles <br> 6. Eastex (US 59 N )--14.8 miles | Average work trip is 10.7 miles and takes 25 minutes US 36 HOV Length - 4.4 miles I-25 HOV Length - 6.6 miles Santa Fe Length - 6.6 miles | Los Angeles County: <br> Existing: 485 Iane miles. Construction: 64 Iane miles. <br> Design: 55 lane miles. Planning: 89 lane miles |
| Congestion levels | ```TTI Index (1) - 1.15 Peak Travel Congestion - 41% Number of Rush Hours - 6 Traffic Volume: I-65 North - 137,000 (2009 for all) I-40 East - 98,000 I-24 South - 152,000 I-65 South - 148,000``` | Katy: LOS of "C" is target | $\begin{aligned} & \hline \text { TTI Index (1)-1.31 } \\ & \% \text { of Peak Travel Congestion - } \\ & 67 \% \\ & \text { Number of Rush Hours - } 7.4 \\ & \text { Info from Denver sources: } \\ & \text { Afternoon rush hour period - } 3 \\ & \text { hours } \\ & 79 \% \text { of regional work trips are } \\ & \text { SOV } \\ & 60 \% \text { of CBD Denver work trips } \\ & \text { are SOV } \\ & \text { Santa Fe Volume s/o I-25 - } \\ & 89,000 \text { (2008) } \\ & \text { US } 36 \text { Volume e/o Federal - } \\ & 116,000 \text { (2008) } \\ & \text { I-25 Volume n/o I-70 - } \\ & 211,000(2007) \end{aligned}$ |  |


| Parameters | Nashville | Houston | Denver | Los Angeles |
| :---: | :---: | :---: | :---: | :---: |
| Time of day use | I-65 North (7-9 a.m.) and South (4-6 p.m.) between Harding Place and Murfreesboro Road (Route 96) in Franklin I-24 North (7-9 a.m.) and South (4-6 p.m.) between the 440 Interchange and Murfreesboro Road (Route 96) in Murfreesboro <br> I-40 East (7-9 a.m.) and West (4-6 p.m.) between Hermitage and Mt. Juliet | ```24/7 Katy (I-10 W) Southwest (US 59 S) Monday-Friday North (I-45 N): 5-11am, 2-8pm Gulf (I-45 S): 5-11am, 2- 8pm Northwest (US290): 5- 11am, 2-8pm Eastex (US 59 N): 5- 1lam, 2-8pm``` | I-25 NB M-F, noon to 3am I-25 SB M-F, 5am to 10am I-25 NB S-S, all day exc for special events US 36, HOV lanes 24/7 US $85 \mathrm{NB}, \mathrm{M}-\mathrm{F}, 6 \mathrm{am}$ to 9 am US 85 SB, M-F 4pm to 6:30 pm | Varies. Typically from 6:30am-7:30am. 3:155:30pm. |
| Person volume (HOV lane and GP lanes) | Unknown. | 1. Katy (I-10 W)--28,585 <br> 2. North (I-45 N)--26,325 <br> 3. Gulf (I-45 S)--18,488 <br> 4. Northwest (US290)-- <br> 20,566 <br> 5. Southwest (US 59 S )-- <br> 23,396 <br> 6. Eastex (US 59 N)-- <br> 5,841 | DRCOG reports 1.38 persons per vehicle for all trips and 1.09 for work trips. The monthly vehicle trip reduction is 103,000 or 1.1 million vehicle miles. (Work trip benefits only. Assumed HOV rate of 2.0 ppv . Express users not counted toward reduction.) | Los Angeles County: 1,300 v/h. 3,300 v/peak hour. Twice the mixed-flow lane during peak hours. <br> LA County: 331,000 <br> vehicles/day. 780,000 people/day. <br> $34 \%$ of freeway people using 20\% of freeway space. |
| Travel demand and trip densities between origins and activity centers | Focus of HOV lanes is the Nashville CBD. 2000 Census commuting data show that the central city county (Nashville is in Davidson County) is the destination for up to $59 \%$ of the surrounding counties' work force. |  | Of Denver CBD workforce (1997 HH survey) 58\% commute in from external communities. Focus of HOV system is on Denver CBD. Jobs in the City of Denver exceed the labor force by 100,000, making Denver a commuter magnet. <br> Express Users mostly come from higher income hhs. 64\% earn 75k or more. (38\% of regional hhs fall into this income bracket.) Only 12\% below $\$ 40 \mathrm{k}$. (42\% of regional hhs) |  |


| Parameters | Nashville | Houston | Denver |  |
| :--- | :--- | :--- | :--- | :--- |
| Travel time <br> savings | TDOT study (2) noted that data <br> are not available to show travel <br> time savings. It also noted that <br> the HOV lanes may not offer <br> significant travel time savings <br> given that many HOVs eligible <br> to use the lanes remained in <br> the GP lanes. | No specific travel time savings <br> known. CDOT monitors travel <br> time on Express Lane to <br> ensure that bus travel times <br> not affected. |  |  |
| Physical <br> characteristics of <br> roadway | All facilities are interstate <br> highways with controlled <br> access. | All facilities are interstate <br> highways with controlled <br> access. <br> Typical features of the six <br> Houston HOV lanes: <br> •Single lane <br> - Barrier separated <br> - Dedicated, direct access <br> ramps for transit <br> - HOV lanes lead to <br> downtown transit streets | Santa Fe is managed, with left <br> turns permitted at some <br> locations <br> US 36 and I-25 are controlled <br> access |  |


| Parameters | Nashville | Houston | Denver | Los Angeles |
| :---: | :---: | :---: | :---: | :---: |
| Design and treatments | HOV lanes are only separated from GP lanes by striping. No ramp treatments are provided to HOVs. | Five types of ramps: <br> 1. One-way ramps operate as entrances in the morning and exits in the evening. <br> 2. Two-way ramps operate as both entrance and exit, mornings and evenings. <br> 3. Cross ramps allow access to/from both sides of the freeway <br> 4. Slip ramps. <br> 5. Wishbone ramps provide access to/from feeder roads on either side of the freeway in the direction of traffic flow. Design used for the HOV lanes was influenced by a number of factors. These factors include limited right-of-way in the freeway corridors, providing a safer operating environment through the use of barriers, and the directional splits in the corridors. | I-25 has physical barriers between the HOV/Express Ianes <br> Gates with cameras and transponder detectors provide access to separated lanes | Painted double-lines restrict crossing except for at designated areas. <br> Many HOV lanes have separated exit ramps for ease of use. |
| Safety challenges | TDOT study (2) found no crash data specific to the HOV and recommended further analysis regarding HOV safety issues. |  | Weather issues in region, particularly ice/snow, can be a challenge <br> Abandoned vehicles in the reversible HOV lanes have created an issue <br> At least one head-on collision has occurred on the reversible I-25 lanes, although equipment was operating correctly |  |


| Parameters | Nashville | Houston | Denver | Los Angeles |
| :---: | :---: | :---: | :---: | :---: |
| I ncident response and management | Nothing found |  | Courtesy patrol on I-25. I-25 has an enforcement lane in one area for pullovers (15' wide) and a shoulder for breakdowns. |  |
| Enforcement | Fine for illegal use of HOV lane is $\$ 50$ with no penalty points or progressive increase for repeat offenders. A 2008 study found violation rates running from 3852\%. In 20081873 citations were issued, up from 1028 in 2007; 2342 issued in 2002. |  | Fine for being neither an HOV or Express Transponder is $\$ 70$. For July 2009, 512 violations recorded--0.1\% violation rate. (Total of HOV and Express users was 322,751 , with 227,868 in HOV and 94,883 in Express.) | LA County: Average violation rate is $1.2 \%$ |
| Support facilities and programs | TDOT notes its policy is to evaluate the persons per hour of HOV in comparison with GP lanes. If the HOV lane PPH is as good or better than GP lanes, HOV performance is adequate. No indication as to whether or how such evaluations are being done. |  | Peak hour fee structure for Express Lane is tagged to be no less than the express bus fare for that route. The current peak hour fare (7:15-8:15 am and $4: 30-6: 00 \mathrm{pm}$ is $\$ 3.50$ per vehicle. <br> DRCOG attributes part of low SOV to CBD to parking costs and availability of alternates. |  |


| Parameters | Nashville | Houston | Denver | Los Angeles |
| :---: | :---: | :---: | :---: | :---: |
| Park-and-ride location criteria | No criteria found. Lots are in close proximity to I-25, the longest stretch of HOV and I-40 East. <br> No lots were shown adjacent to I-65 North or South. <br> State Office of Passenger Transportation is responsible for development of park-and-ride lots. | No criteria found. <br> The larger park-and-ride lots have direct access to the HOV lanes and transit stations with passenger amenities. <br> 28 park-and-ride lots and four park-and-pool lots. There are spaces for between 900 and 2,500 automobiles at 19 of the lots. Parking spaces at lots range from over 3,000 to almost 7,500. <br> The park-and-ride lots have transit stations with covered passenger waiting areas and other amenities. Transit centers without park-and-ride lots or with small lots are located at strategic transfer points. Direct access ramps connect major park-andride lots and transit stations to HOV lanes. Park-and-ride lots are 42$37 \%$ occupied. | RTD operates 70 park-and-ride lots in Denver metro area. Parking fees at some lots to vehicles registered outside RTD. <br> Guidelines for maximum walk distances between parking spaces and station platforms of 1000-1500 feet. <br> Criteria for design also based on area typology: urban center, community center, neighborhood center. Also, intersection frequency, transit service level, land use, ped/bike needs, and vehicle speeds. <br> Consideration of run-off, landscaping to reduce heat islands, noise walls, future expansion and impact on surrounding area, displacements | On most HOV freeways. |
| Transit component | TDOT study noted that transit service levels not high enough to affect HOV operation policy. |  | Buses are a permitted use on any HOV/Express Lane. |  |
| 2+ occupancy | Yes | Typically. See below. | Yes | Typically. Can be 1+ off peak |
| 3+ occupancy |  | $\begin{aligned} & \text { US290 West M-F, 6:45- } \\ & \text { 8am } \end{aligned}$ |  | I-10 only requires 3+. |
| Motorcycles | Yes | Yes | Yes | Yes |
| Hybrid/ alternative fuels | Yes, since J anuary 2009 | No | Yes - decal from State reqd for specified alt fuels. Not clear if hybrids qualify. Survey results showed opposition to hybrids, but CDOT was ready to approve such usage | Yes. Hybrid or alt. fuel vehicle LA County: aver. 80 hybrids during AM and PM peak hour. Some HOVs carry over 300 hybrids during the AM peak hour. |


| Parameters | Nashville | Houston | Denver | Los Angeles |
| :---: | :---: | :---: | :---: | :---: |
| Toll paying | No | The Quick Ride valuepricing project operates on these two lanes, allowing participating $2+$ carpools use of the lane for a $\$ 2.00$ per trip fee. | Yes - Transponder or License scan/billing | Yes. Reduced tolls for HOVs. |
| Emergency vehicles | Yes |  | Yes - only on I-25 |  |
| Concurrent flow | Yes | Yes | Yes - on US 36 and Santa Fe | Yes |
| Separated | No | Yes | I-25 and section of US 36 | No |
| Contraflow | No | Yes. Katy Freeway increased from 86 AM peak HOV vehicles at opening date to 1,511 vehicles in 3 yrs. | I-25 is reversible lane system with permanent barriers | No |
| Opening date |  | 1. Katy (I-10 W): 1984 <br> 2. North (I-45 N): 1984 <br> 3. Gulf (I-45 S): 1988 <br> 4. Northwest (US290): <br> 1988 <br> 5. Southwest (US 59 S ): <br> 1993 <br> 6. Eastex (US 59 N): 1999 |  | LA-10 (Alameda to Baldwin Ave) was first HOV in LA. Opening in 1973. |

Table 2. HOV Study Matrix Summary - Part 2:
Portland/ Vancouver (OR/ WA), Sacramento, Salt Lake City, Seattle, Vancouver (BC)

| Parameters | Portland/ Vancouver | Sacramento | Salt Lake City | Seattle | Vancouver, BC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Trip distance | I-5 North 3.5 miles I-5 South 4 miles | US 50, Sunrise Blvd to El Dorado Blvd - 22.8 miles <br> SR 99/51, Elk Grove Blvd to US 50-28.6 miles I-80, Roseville Rd to Antelope Rd- 17.2 miles Total $=66.8$ miles | 24.5 miles on I-15 (from 600 North to Utah County line south) | I-5: approx 38 miles (Pierce to Snohomish County) I-405: approx 25 miles ( $1-5$ Junction near Tukwila to Snohomish co. border);SR520: 7 mil. Redmond to Clyde Hill; 190: 12 miles (Issaquah to Seattle) | Granville St - 8 blocks Georgia St - 1.1 route miles |
| Congestion levels |  | TTI Index (1) - 1.32 <br> Peak Travel <br> Congestion - 76\% <br> Number of Rush Hours $-7.8$ | $\begin{aligned} & \text { TTI Index (1) }-1.19 \\ & \text { Peak Travel } \\ & \text { Congestion }-54 \% \\ & \text { Number of Rush Hours } \\ & -6.6 \end{aligned}$ | $\begin{aligned} & \text { TTI Index (1) for } 2007 \\ & =1.29 \\ & \text { Peak Travel } \\ & \text { Congestion }=66 \% \\ & \text { Number of Rush Hours } \\ & =7.2 \end{aligned}$ |  |
| Time of day use | 6-8 AM, 3-6 PM | 6-10 AM, 3-7 PM | 24/7 | $\begin{aligned} & \text { I-5 - } 24 \text { Hours, I-405 } \\ & =5 \text { a to } 7 p \end{aligned}$ <br> Some parts of I-5 and I-90 have HOV lanes in Reversible Express lanes with variable hours | Granville St - M-F: 3-6 pm (SB only); Georgia St: Richards - Nicola: M-F: 3-7 pm; Nicola Denman: 24 hours |


| Parameters | Portland/ Vancouver | Sacramento | Salt Lake City | Seattle | Vancouver, BC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Person volume (HOV lane and GP lanes) | N - > 2300 persons/hour ( 1600 GP persons/hr in each adjacent lane); S ~ 1400 persons.hr (1100 GP persons/hr in each adjacent lane) |  | Average Vehicle Occupancy: GP - 1.05, HOV-2.31. Person per Hour per Lane averages 900-1800 both AM and PM peak hours | I-5 South of Seattle CBD - AM 3-Hr Peak, NB - 11,943 Persons / Lane (PPL) for HOV, 6,248 PPL for GP (4 Lanes) - PM 4-Hr Peak, SB - 16,599 PPL for HOV, 8,012 PPL for GP-4. <br> I-90 near Issaquah - <br> AM 3-Hr WB, 3,400 <br> PPL for HOV, 4,734 <br> PPL for GP (3 lanes), <br> 4-hr PM EB, 4,916 PPL for HOV, 6,922 PPL for GP-3. <br> I-405 near Kirkland - <br> AM 3-hr, SB <br> 7,295 PPL, HOV, 5,863 <br> PPL for GP - 3 lanes, <br> PM 4-hr NB, 12,443 <br> PPL HOV, 6,936 PPL GP-3. | No information |
| Travel demand and trip densities (origins and activity centers) | No information |  |  |  | No information |
| Travel time savings | I-5 N > $2 \mathrm{~min} /$ mile; $\quad \mathrm{I}-5 \mathrm{~S}$ $<2 \mathrm{~min} / \mathrm{mile}$ |  | 1.82 min or $8.44 \%$ (HOV 19.75 vs GP 21.57 min ) | Depends on corridor. Time savings range from 1 minute to almost 13 minutes (I405 north of I-90, AM peak) |  |
| Physical characteristics of roadway |  | single lane dedicated during peak hours | single lanes both directions | Single lanes in both directions <br> Dedicated, direct access points at some locations |  |


| Parameters | Portland/ Vancouver | Sacramento | Salt Lake City | Seattle | Vancouver, BC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Design and treatments |  | painted separation furthest outside lane | painted separation furthest outside lane | Painted separation, located near median in most places, sometimes located in outside lanes. Direct Access ramps for certain locations. | Granville St: Curb lane on commuter arterial corridor; links airport/suburbs with CBD; separation by dash line; Georgia St: Curb lane on CBD arterial, feeds main commuter route, separation by standard dash line |
| Safety challenges | No information |
| I ncident response/ management | No information |
| Enforcement |  |  |  | Washington State Patrol, ticket is \$124. In 2008, issued 10,000 tickets for HOV violations. Citizens can report license plate numbers of violators. Average violation rate is $5 \%$. |  |
| Support facilities and programs | No information |
| Park-and-ride location criteria |  |  | Most TRAX stations (16 total) are free Park and Ride lots, excluding downtown station | Sound Transit operates about 80 Park N Ride Lots / Stations. Some lots are located next to Flyer Stops. WSDOT did a Park N Ride Lot planning study in 2001; used a model to estimate demand at the corridor level. |  |
| Transit component | Transit ridership, peak hour: $\mathrm{N} \sim 600$; $\mathrm{S} \sim 400$ | E-tran, Caltrans BusPool | TRAX | Buses are permitted. |  |
| 2+ occupancy | Yes | Yes | Yes | Yes | No |


| Parameters | Portland/ Vancouver | Sacramento | Salt Lake City | Seattle | Vancouver, BC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3+ occupancy | Yes |  |  | Only on SR 520, west of I-405 | Yes |
| Motorcycles | Yes | Yes | Yes | Yes | Yes |
| Hybrid/ alternative fuels |  | Yes | Yes | Same occupancy requirements as regular vehicles. | Not specified |
| Toll paying | No |  | Electronic toll system for solo users deducts 25 cents to $\$ 1$ | on SR 167 between Renton and Auburn | No |
| Emergency vehicles |  |  | Yes | Yes |  |
| Concurrent flow |  | Yes | Yes |  |  |
| Separated |  | No |  |  |  |
| Contraflow |  | No |  |  |  |
| Opening date | NB, PM 1998 (made permanent 2006-2007); <br> SB, AM 2001 - SB converted to GP 2005 | ```US 50: 2002 is stages I-80: 2003 and 2004 SR 99/51: 1990, 1998, 1999``` |  |  | Granville St: Mid 1990s; Georgia St: 1980s - Extended in segments Denman to Nicola 1980s, Nicola to Burrard 1990s, Burrard to Richards 2003 |


[^0]:    ${ }^{1}$ Interstate 84/184 - High Occupancy Vehicle Lanes Stage 1: Feasibility Study. Prepared for Idaho Transportation Department District 3, prepared by URS. February 2011.

[^1]:    ${ }^{2}$ Treasure Valley Congestion Management System Plan. Report No. 6-2005. Community Planning Association of Southwest Idaho, March 2005.

