

For Office Use Only								
File Number (s)								
Project name								
Date Received								
Date Accepted/ Complete								
Cross Reference Files								
Commission Hearing Date								
City Council Hearing Date								

Commission & Council Review Application

Note: Engineering fees shall be paid by the applicant if required.

to ano	208.922.5274 "Ple Fax: 208.922.5989	ease submit the appropriate checklist (s) with application
FUNA IDAM	Website: www.kunacity.id.gov	Type of Review (check all that apply):
For Offi	ice Use Only	✓ Annexation
File Number (s)		Appeal
		Comprehensive Plan Amendment
Project name		☐ Design Review
		□ Development Agreement
Date Received		☐ Final Planned Unit Development
		☐ Final Plat
Date Accepted/		☐ Lot Line Adjustment
Complete		☐ Lot Split
Cross Reference Files		☐ Planned Unit Development
riies		☐ Preliminary Plat
Commission Hearing Date		
		☑ Rezone
City Council Hearing Date		☐ Special Use
Bute		☐ Temporary Business
		☐ Vacation
Contact/Applic	cant Information	☐ Variance
Owners of Recor	rd:_TJ Johnson / HTPM	Phone Number:
	425 N. Locust Grove Road	E-Mail:
City, State, Zip:_	Kuna, ID 83634	Fax #:
Applicant (Devel	oper): Trilogy Development, Inc	Phone Number: 208-895-8858
	39 W. Cable Car St., Suite 101	E-Mail:
City, State, Zip:_	Boise, ID 83709	Fax #:
Engineer/Repres	sentativeGem State Planning / Jane Su	ggsPhone Number: 208-602-6941
	340 W. Overland Road, Suite 120	E-Mail: jane@gemstateplanning.com
City, State, Zip:_	Boise, ID 83709	Fax #:
Subject Prope	erty Information	
Site Address: _2	2425 N. Locust Grove Road and surrou	unding parcels
Site Location (Cr	ross Streets): Ardell Street extension	n, Stroebel Road extension, Locust Grove Road
Parcel Number ((s): <u>\$1418123460, \$1418123485, \$</u>	31418427800, S1418417200
Section, Townsh	nip, Range: <u>18, 2N, 1E</u>	
Property size : _	approximately 97 acres	
Current land use	agriculture	Proposed land use: SF residential
Current zoning d		Proposed zoning district: R-6 / R-8

Project Description

Project / subdivision name: Ledgestone South
General description of proposed project / request:annex, rezone and preliminary plat for single family
subdivision for 393 buildable lots, plus substantial open space
Type of use proposed (check all that apply):
☑ Residential
Commercial
Office
Industrial
Other
Amenities provided with this development (if applicable): swimming pool w/changing room, picnic shelter
playgound equipment, open space/park, connecting pathways
Residential Project Summary (if applicable)
Are there existing buildings? ✓ Yes ✓ No
Please describe the existing buildings: SF home to be annexed and zoned, but not part of plat
Any existing buildings to remain? ✓ Yes No
Number of building lots: 393 Number of building lots: 393
Number of common and/or other lots: 44
Type of dwellings proposed:
✓Single-Family
☐ Townhouses
□ Duplexes
☐ Multi-Family ————————————————————————————————————
Other
Minimum Square footage of structure (s):
Gross density (DU/acre-total property): 4.07Net density (DU/acre-excluding roads): _5.65
Percentage of open space provided: 15.2%/11.6% *Acreage of open space: 14.68 / 11.18*
Type of open space provided (i.e. landscaping, public, common, etc.): common, landscaping, park,
* = qualified open space
Non-Residential Project Summary (if applicable)
Number of building lots:Other lots:
Gross floor area square footage:Existing (if applicable):
Hours of operation (days & hours):Building height:
Total number of employees:Max. number of employees at one time:
Number and ages of students/children:Seating capacity:
Fencing type, size & location (proposed or existing to remain):
Proposed Parking: a. Handicapped spaces:Dimensions:
Proposed Parking: a. Handicapped spaces:Dimensions: b. Total Parking spaces:Dimensions:
c. Width of driveway aisle:
Proposed Lighting:
Proposed Landscaping (berms, buffers, entrances, parking areas, common areas, etc.):
Applicant's Signature: Jane Suggs Date: 04-07-20

Gem State Planning, LLC

April 29, 2020

Ms. Wendy Howell, Planning Director 751 W. 4th Street Kuna, ID 83634

Subject: Ledgestone South Subdivision

Applications for Annexation, Rezone, Preliminary Plat and Design Review

Dear Ms. Howell:

Please accept the attached applications and support materials for a new residential community in Kuna. Ledgestone South is the natural extension of the Ledgestone Subdivision that is currently under construction. This new subdivision is 96.6 acres and located south of the Ledgestone Subdivision, between Stroebel Road and Locust Grove Road (2N, 1W, 22). The extension of Ardell Road, an east-west mid-mile collector between Locust Grove and Stroebel Road, will be constructed as part of this new development. The community will include 393 single family home lots, along with substantial open space, a neighborhood swimming pool, play structure, picnic shelter and pathway connections throughout the community.

Annexation and Zone

Like Ledgestone Subdivision, we respectfully request annexation into the City of Kuna with Medium Density Residential Zoning designations, R-6 and R-8. Both zones are supported by the Kuna Comprehensive Plan that designates this property as Medium Density Residential. Kuna Zoning Code 5-5-5-B describes the R-6 zone as a district to promote the development of medium density living area, not to exceed six (6) dwelling units per net acre. The majority of Ledgestone South is developed with standard R-6 lots. Similarly, the R-8 zone promotes medium to high residential density at 8 dwelling units per acre. The R-8 zone is proposed for just those blocks that are alley loaded. The R-8 dimensional standards allow for narrower lots, since garages are located behind the homes and accessed via a public alleyway. The gross density of Ledgestone South is 4.07 dwelling units/acre.

We are requesting that the lot on Locus Grove Road, labeled as "not a part" on the preliminary plat, also be annexed and zoned R-6. This lot is the old homeplace of the original property owners, TJ and Eileen Johnson. The Johnsons did not wish to be included in the Ledgestone South subdivision; however, they wanted to keep a smaller acreage. This remaining homeplace lot does not meeting the minimum lot size for the County's RR zone of 10 acres. We have included a copy of the Record of Survey that separates this homeplace lot from the Johnson farmland.

The legal descriptions for the 2 zoning designations are included in our application package.

Preliminary Plat

Ledgestone South is planned for 393 single family home lots and 44 common lots and is characterized by a traditional block layout and a large central open space. There are landscaped open areas in each quadrant of the community, providing passive recreation areas close to all homes. Each buildable lot meets the R-6 dimensional standards, except for the homes on 4 alley loaded blocks. Those blocks will be zoned R-8. As with our previous Ledgestone application, we request a director's allowance for a front setback of 15', instead of 20', and a lot coverage of 55%. This reduced front setback creates a nice streetscape and the lot coverage still allows 5' sideyard setbacks and a 20' rear setback. The standard 20' rear setback allows parking on the garage apron.

Open Space and Connectivity

A key feature of Ledgestone South is the large central park. As shown in the attached Landscape Plan and especially on the Landscape Plan rendering, this 3.9 acre park will include a neighborhood swimming pool that will serve both Ledgestone and Ledgestone South residents. The park will also include a play structure and a covered picnic shelter, along with a few off-street parking spaces.

The shared boundary between Ledgestone and Ledgestone South is a common lot that includes a 5'-wide pathway. This pathway is over ½ mile long and connects to other sidewalks and pathways in both Ledgestone and Ledgestone South. Pathways are considered one of the most used amenities in residential development. As noted previously, there are also landscaped open spaces close to all homes that serve as passive recreation and convenient gathering spots.

A substantial portion of Ledgestone South is open space. Over 14.6 acres of the 96.6 acre site, or 14.68%, is common/open space. The usable open space, which does not include our landscaped buffers and end caps, totals 11.18 acres or 11.6% of the site. This usable open space in Ledgestone South exceeds the 10.5% requirement in Kuna Code 5-12-12-D approved in January of this year.

We have included a Design Review application for approval of our extensive landscaping.

Streets and Utilities

A new mid-mile collector road, Ardell Road, runs east-west through the property. Construction of this collector, plus the extension of Stroebel Road to Ardell Road, will improve the traffic circulation in this area. Residents will be able to use these collectors to travel between neighborhoods instead of travelling on the arterial streets.

All local streets are public streets and constructed to ACHD and Kuna street standards: 36' back of curb to back of curb, with attached sidewalks, in a 50' right-of-way. There are two street connections to Ledgestone: at N. Moonshadow Avenue and N. Coosa Avenue, which connects to E. Rio Vallegas Street; and additional stub streets to properties to the south.

As described previously we have designed 4 blocks with attractive homes that face a public street, but with vehicle access from a 20' wide public alley in the rear of the homes.

A Traffic Impact Study has been completed and reviewed by both ACHD and ITD.

All necessary utilities will be available to the site, including pressurized irrigation that will be provided to each lot. The preliminary phasing of construction is shown on page 6 in the preliminary plat set.

Neighborhood Meeting

Our first neighborhood meeting was held on Thursday, November 14, 2019, at Kuna High School Library. The attendance sheet is attached. Neighbors who attended were concerned with maintaining property irrigation and drainage.

After our neighborhood meeting our plat was revised to include the Ardell Road extension and we held a 2^{nd} neighborhood meeting. This meeting was held on Wednesday, February 19, 2020, also at Kuna High School. That attendance sheet is attached.

Summary

Ledgestone South will be a real asset to the City of Kuna; with multiple lot sizes, innovative alley loaded homes, a large park with swimming pool and amenities, extensive pathways and the construction of 2 collector streets.

We look forward to working with you and your staff throughout the approval process. Please contact me if you have any questions or comments.

Sincerely,

Jane Suggs

Jane Suggs

Ledgestone South

Vicinity Map

Apr 28, 2020 - landproDATA.com Scale: 1 inch approx 1000 feet The materials available at this website are for informational purposes only and do not constitute a legal document.

Jane Suggs

From: Sub Name Mail <subnamemail@adacounty.id.gov>

Sent: Friday, January 31, 2020 1:44 PM

To: Jane Suggs

Cc: 'Gregory Carter (gcarter@idahosurvey.com)'

Subject: RE: Ledgestone South Subdivision Name Reservation

January 31, 2020

Greg Carter, Idaho Survey Group Jane Suggs, Gem State Planning

RE: Subdivision Name Reservation: LEDGESTONE SOUTH SUBDIVISION

At your request, I will reserve the name **Ledgestone South Subdivision** for your project. I can honor this reservation only as long as your project is in the approval process. Final approval can only take place when the final plat is recorded.

This reservation is available for the project as long as it is in the approval process unless the project is terminated by the client, the jurisdiction or the conditions of approval have not been met, in which case the name can be re-used by someone else.

Sincerely,

Glen Smallwood
Surveying Technician
Ada County Development Services
200 W. Front St., Boise, ID 83702
(208) 287-7926 office
(208) 287-7909 fax

From: Jane Suggs <jane@gemstateplanning.com>

Sent: Thursday, January 30, 2020 4:02 PM

To: Sub Name Mail <subnamemail@adacounty.id.gov>
Co: Danielle Couchman <danielle@trilogyidaho.com>

Subject: [EXTERNAL] New Subdivision name - Ledgestone South Subdivision

CAUTION: This email originated from outside Ada County email servers. Do not click on links or open attachments unless you recognize the sender and know the content is safe. Verify the sender by mouse-hovering over their display name in order to see the sender's full email address and confirm it is not suspicious. If you are unsure an email is safe, please report the email by using the 'Phish Alert' button in Outlook.

Hi Subnamemail,

I would like to request a new subdivision name: Ledgestone South Subdivision.

This subdivision is directly south of the approved and under construction Ledgestone Subdivision. See the attached map showing the parcels that make up Ledgestone South.

DESCRIPTION FOR LEDGESTONE SOUTH SUBDIVISION

A portion of the NE1/4 and NW1/4 of the SE 1/4 of Section 18, T.2N., R.1E., B.M., Ada County, Idaho, more particularly described as follows:

BEGINNING at the C1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence along North-South centerline of said Section 18 North 00°23'35" East, 1,496.20 feet:

thence leaving said North-South centerline South 77°18'25" East, 398.64 feet;

thence South 70°52'25" East, 990.00 feet;

thence North 85°22'35" East, 1,329.94 feet to a point on the East boundary line of said Section 18;

thence along said East boundary line South 00°22'30" West, 1044.77 feet;

thence leaving said East boundary line North 83°48'49" West, 254.83 feet;

thence South 01°28'13" East, 193.82 feet to point on the East-West centerline of said Section 18;

thence along said East-West centerline South 89°31'55" East, 247.28 feet to the E1/4 of said Section 18;

thence along said East boundary line South 00°23'29" West, 352.66 feet;

thence leaving said East boundary line North 89°36'45" West, 853.65 feet;

thence North 33°44'39" West, 427.90 feet to point on the East-West centerline of said Section 18;

thence along said East-West centerline North 89°31'55" West, 232.34 feet to the C-E 1/16 corner of said Section 18;

thence along the East boundary line of the NW1/4 of the SE 1/4 of said Section 18 South 00°19'01" West, 1,115.69 feet;

thence leaving said East boundary line North 40°42'16" West, 320.50 feet;

thence North 47°01'16" West, 354.00 feet;

thence North 53°29'46" West, 154.82 feet;

thence North 78°43'23" West, 282.06 feet;

thence North 52°27'08" West, 37.04 feet;

thence North 38°31'46" West, 134.23 feet;

thence North 41°29'51" West, 490.35 feet to a point on the North boundary line of said Northwest 1/4 of the Southeast 1/4;

thence along said North boundary line North 89°31'55" West, 13.00 feet to the **POINT OF BEGINNING**. Containing 98.74 acres, more or less.

DESCRIPTION FOR LEDGESTONE SOUTH ANNEXATION PARCEL R-6 ZONE

A portion of the NE1/4 and NW1/4 of the SE 1/4 of Section 18, Township 2 North, Range 1 East, Boise Meridian, Ada County, Idaho, more particularly described as follows:

BEGINNING at the C1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence along North-South centerline of said Section 18 North 00°23'35" East, 1,496.20 feet;

thence leaving said North-South centerline South 77°18'25" East, 398.64 feet;

thence South 70°52'25" East, 990.00 feet;

thence North 85°22'35" East, 1,329.94 feet to a point on the East boundary line of said Section 18;

thence along said East boundary line South 00°22'30" West, 1,213.09 feet to the E1/4 of said Section 18;

thence continuing along said East boundary line South 00°23'29" West, 352.66 feet;

thence leaving said East boundary line North 89°36'45" West, 853.65 feet;

thence North 33°44'39" West, 427.90 feet to point on the East-West centerline of said Section 18;

thence along said East-West centerline North 89°31'55" West, 232.34 feet to the C-E 1/16 corner of said Section 18;

thence along the East boundary line of the NW1/4 of the SE 1/4 of said Section 18 South 00°19'01" West, 1,115.69 feet;

thence leaving said East boundary line North 40°42'16" West, 320.50 feet;

thence North 47°01'16" West, 354.00 feet;

thence North 53°29'46" West, 154.82 feet;

thence North 78°43'23" West, 282.06 feet;

thence North 52°27'08" West, 37.04 feet;

thence North 38°31'46" West, 134.23 feet;

thence North 41°29'51" West, 490.35 feet to a point on the North boundary line of said Northwest 1/4 of the Southeast 1/4;

thence along said North boundary line North 89°31'55" West, 13.00 feet to the **POINT OF BEGINNING**. Containing 99.78 acres, more or less.

EXCEPTING THEREOF:

A portion of the NE1/4 and the NW1/4 of the SE1/4 of Section 18, Township 2 North, Range 1 East, Boise Meridian, Ada County, Idaho, more particularly described as follows:

PARCEL P1:

Commencing at the C1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence North 74°14'02" East, 772.52 feet to the **REAL POINT OF BEGINNING**;

thence North 00°23'35" East, 537.54 feet;

thence 32.70 feet along the arc of curve to the right, said curve having a radius of 100.00 feet, a central angle of 18°44'01" and a long chord which bears North 09°45'36" East, 32.55 feet:

thence North 19°07'36" East, 53.50 feet;

thence South 70°52'24" East, 210.80 feet;

thence 124.38 feet along the arc of curve to the right, said curve having a radius of 100.00 feet, a central angle of 71°15'59" and a long chord which bears South 35°14'24" East, 116.52 feet;

thence South 00°23'35" West, 457.92 feet;

thence North 89°36'25" West, 290.00 feet to the **REAL POINT OF BEGINNING**. Containing 3.81 acres, more or less.

PARCEL P2:

Commencing at the C1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence North 81°26'47" East, 1434.89 feet to the REAL POINT OF BEGINNING;

thence North 00°35'53" East, 654.74 feet;

thence 78.54 feet along the arc of curve to the right, said curve having a radius of 50.00 feet, a central angle of 90°00'00" and a long chord which bears North 45°35'53" East, 70.71 feet:

thence South 89°24'11" East, 240.00 feet;

thence South 00°35'53" West, 414.08 feet;

thence South 89°32'30" East, 270.00 feet;

thence South 89°31'35" East, 476.64 feet;

thence South 00°22'30" West, 189.84 feet;

thence 157.24 feet along the arc of curve to the right, said curve having a radius of 100.00 feet, a central angle of 90°05'35" and a long chord which bears South 45°25'17" West, 141.54 feet:

thence North 89°31'55" West, 937.61 feet to the **REAL POINT OF BEGINNING**. Containing 9.60 acres, more or less.

PARCEL P3:

Commencing at the C 1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence South 79°13'58" East, 916.28 feet to the REAL POINT OF BEGINNING;

thence South 89°36'25" East, 290.07 feet;

thence South 00°19'01" West, 216.21 feet;

thence South 00°39'57" West, 93.53 feet;

thence South 00°06'39" East, 76.32 feet;

thence 43.69 feet along the arc of a non-tangent curve to the right, said curve having a radius of 300.00 feet, a central angle of 08°20'36" and a long chord which bears South 04°29'19" West, 43.65 feet:

thence South 08°39'37" West, 51.48 feet;

thence 108.49 feet along the arc of curve to the right, said curve having a radius of 50.00 feet, a central angle of 124°19'07" and a long chord which bears South 70°49'10" West, 88.42 feet;

thence North 47°01'16" West, 325.55 feet;

thence 5.11 feet along the arc of curve to the left, said curve having a radius of 150.00 feet, a central angle of 01°57'13" and a long chord which bears North 47°59'53" West, 5.11 feet;

thence North 41°01'31" East, 35.00 feet;

thence 70.99 feet along the arc of curve to the left, said curve having a radius of 100.00 feet, a central angle of 40°40'23" and a long chord which bears North 20°41'19" East, 69.51 feet:

thence North 00°21'08" East, 194.71 feet to the **REAL POINT OF BEGINNING**. Containing 3.04 acres, more or less.

Net Area of R-6 Annexation and Re-Zone is 83.33 acres.

9955 W. EMERALD ST. BOISE, IDAHO 83704 (208) 846-8570 SURVEY GROUP, LLC

LEDGESTONE SOUTH SUBDIVISION

LOCATED IN THE NE 1/4 AND THE NW 1/4 OF THE SE 1/4 OF SECTION 18 T.2N., R.1E., B.M., ADA COUNTY, IDAHO

DWG. DATE 4/29/2020

DESCRIPTION FOR

LEDGESTONE SOUTH ANNEXATION AND R-8 REZONE

A portion of the NE1/4 and the NW1/4 of the SE1/4 of Section 18, Township 2 North, Range 1 East, Boise Meridian, Ada County, Idaho, more particularly described as follows:

PARCEL P1:

Commencing at the C1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence North 74°14'02" East, 772.52 feet to the REAL POINT OF BEGINNING;

thence North 00°23'35" East, 537.54 feet;

thence 32.70 feet along the arc of curve to the right, said curve having a radius of 100.00 feet, a central angle of 18°44'01" and a long chord which bears North 09°45'36" East, 32.55 feet;

thence North 19°07'36" East, 53.50 feet;

thence South 70°52'24" East, 210.80 feet;

thence 124.38 feet along the arc of curve to the right, said curve having a radius of 100.00 feet, a central angle of 71°15'59" and a long chord which bears South 35°14'24" East, 116.52 feet:

thence South 00°23'35" West, 457.92 feet;

thence North 89°36'25" West, 290.00 feet to the **REAL POINT OF BEGINNING**. Containing 3.81 acres, more or less.

PARCEL P2:

Commencing at the C1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence North 81°26'47" East, 1434.89 feet to the REAL POINT OF BEGINNING;

thence North 00°35'53" East, 654.74 feet;

thence 78.54 feet along the arc of curve to the right, said curve having a radius of 50.00 feet, a central angle of 90°00'00" and a long chord which bears North 45°35'53" East, 70.71 feet:

thence South 89°24'11" East, 240.00 feet;

thence South 00°35'53" West, 414.08 feet;

thence South 89°32'30" East, 270.00 feet;

thence South 89°31'35" East, 476.64 feet;

thence South 00°22'30" West, 189.84 feet;

thence 157.24 feet along the arc of curve to the right, said curve having a radius of 100.00 feet, a central angle of 90°05'35" and a long chord which bears South 45°25'17" West, 141.54 feet;

thence North 89°31'55" West, 937.61 feet to the **REAL POINT OF BEGINNING**. Containing 9.60 acres, more or less.

PARCEL P3:

Commencing at the C 1/4 corner of said Section 18 from which the N1/4 corner of said Section 18 bears North 00°23'35" East, 2,647.91 feet;

thence South 79°13'58" East, 916.28 feet to the REAL POINT OF BEGINNING;

thence South 89°36'25" East, 290.07 feet;

thence South 00°19'01" West, 216.21 feet;

thence South 00°39'57" West, 93.53 feet;

thence South 00°06'39" East, 76.32 feet;

thence 43.69 feet along the arc of a non-tangent curve to the right, said curve having a radius of 300.00 feet, a central angle of 08°20'36" and a long chord which bears South 04°29'19" West, 43.65 feet;

thence South 08°39'37" West, 51.48 feet;

thence 108.49 feet along the arc of curve to the right, said curve having a radius of 50.00 feet, a central angle of 124°19'07" and a long chord which bears South 70°49'10" West, 88.42 feet:

thence North 47°01'16" West, 325.55 feet;

thence 5.11 feet along the arc of curve to the left, said curve having a radius of 150.00 feet, a central angle of 01°57'13" and a long chord which bears North 47°59'53" West, 5.11 feet;

thence North 41°01'31" East, 35.00 feet;

thence 70.99 feet along the arc of curve to the left, said curve having a radius of 100.00 feet, a central angle of 40°40'23" and a long chord which bears North 20°41'19" East, 69.51 feet;

thence North 00°21'08" East, 194.71 feet to the **REAL POINT OF BEGINNING**. Containing 3.04 acres, more or less.

SURVEY GROUP, LLC

IDAHO

9955 W. EMERALD ST. BOISE, IDAHO 83704 (208) 846-8570 EXHIBIT__ DRAWING FOR

ANNEXATION & R-8 RE-ZONE

LEDGESTONE SOUTH SUBDIVISION

LOCATED IN THE NE 1/4 AND THE NW 1/4 OF THE SE 1/4 OF SECTION 18 T.2N., R.1E., B.M., ADA COUNTY, IDAHO

JOB NO. 19-104 SHEET NO. 10f3

DWG. DATE 4/29/2020

SURVEY GROUP, LLC

9955 W. EMERALD ST. BOISE, IDAHO 83704 (208) 846-8570

ANNEXATION & R-8 RE-ZONE LEDGESTONE SOUTH SUBDIVISION

LOCATED IN THE NE 1/4 AND THE NW 1/4 OF THE SE 1/4 OF SECTION 18 T.2N., R.1E., B.M., ADA COUNTY, IDAHO

JOB NO. 19-104

SHEET NO. 2of3 DWG, DATE

4/29/2020

Traffic Impact Study Ledgestone South Subdivision

Addendum #1 April 2020

Prepared For:

Trilogy Development, Inc. 9839 W. Cable Car Street Ste. 101 Boise, ID 83709

Prepared By:

WHPacific, an NV5 Company 690 S Industry Way Ste. 10 Meridian, ID 83642

1.0 ADDENDUM 1

This Addendum #1 addresses comments received by ACHD dated March 3, 2020 on the Ledgestone South Subdivision Traffic Impact Study. Original comments and subsequent responses are provided as follows:

1.1 **COMMENT #1**

ACHD staff does not agree with the background growth rate used to complete the study. This was consistent with Patagonia Subdivision and assumed 10% growth on ACHD facilities and 4% growth on SH-69. ACHD has asked for a revision using ACHD approved growth rates which are identified as follows:

Hubbard Rd: 63.5% Deer Flat Rd: 18.5% Columbia Rd: 13% Lake Hazel Rd: 9% Locust Grove Rd: 19%

SH-69: 4%

These individual rates will lead to volume balancing discrepancies between intersections which ACHD indicated could be ignored These new growth rates will affect 2025 background and 2025 site plus background volumes. ITD further requested that site generate traffic from Ledgestone and Patagonia Subdivisions be included in the 2025 background traffic volumes at SH-69 and Hubbard Road. Revised roadway and intersection LOS results are provided in the following tables. 2025 background and 2025 site plus background figures are also included herein.

Table 6R - Roadway Segment LOS - 2025 Background Traffic (replaces original Table 6)

	No. of		No. of		shold ume	AM Peak Majo Direct	or	PM Peak Hour Major Direction		
Roadway Segment	Functional Class	Thru Lanes	Left-Turn Treatment	LOS D	LOS E	Vol (vph)	LOS	Vol (vph)	LOS	
Hubbard Rd, SH69 to Locust Grove Rd	Minor Arterial	1	No LT Lane	540	575	1091/7 5 583*	> E	468/116 301*	< D	
Hubbard Rd, SH69 to Locust Grove Rd	Minor Arterial	1	Continuous LT Lane	675	720	1091/7 5 583*	< D	468/106 287*	< D	
Hubbard Rd, Locust Grove to Eagle	Minor Arterial	1	No LT Lane	540	575	536	< D	593	> E	

Hubbard Rd, Locust Grove to Eagle	Minor Arterial	1	Continuous LT Lane	675	720	536	< D	593	< D
Locust Grove Rd, Deer Flat to Hubbard	Minor Arterial	1	No LT Lane	540	575	132	< D	343	< D
Locust Grove Rd, Hubbard to Columbia	Minor Arterial	1	No LT Lane	540	575	177	< D	242	< D
Locust Grove Rd, Columbia to Lake Hazel	Minor Arterial	1	No LT Lane	540	575	394	< D	482	< D
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	1	No LT Lane	540	575	469	< D	863	> E
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	2	Continuous LT Lane	1395	1540	469	<d< td=""><td>863</td><td><d< td=""></d<></td></d<>	863	<d< td=""></d<>

^{*}Large volume discrepancy between intersections due to inconsistent growth rates. Average value used.

Per ACHD Policy, the target LOS threshold for roadway segments is LOS E for Principal and Minor Arterial. Three of the six roadway segments do not meet this desired operational threshold under 2025 background conditions. These locations include Hubbard Road, SH69 to Locust Grove Road; Hubbard Road, Locust Grove to Eagle Road; and Locust Grove Road, Lake Hazel to Amity. Incorporating an unrestricted median/continuous left-turn lane will mitigate these conditions. Additional lane capacity is also needed on Locust Grove, Lake Hazel Road to Amity Road. These modifications will be assumed under subsequent roadway segment analyses.

Table 7R – Intersection Traffic Operations – 2025 Background Traffic (replaces original Table 7)

Intersection	Traffic Control Lane Group	AM LOS/Delay/v/c	PM LOS/Delay/v/c
	Traffic Signal	C/25.5	C/33.3
	Eastbound	C/29.1/0.59	D/35.5/0.22
Hubbard Rd/ SH69	Westbound	C/30.0/0.37	D/41.6/0.22
	Northbound	C/29.1/0.89	C/26.9/0.44
	Southbound	B/14.9/0.38	C/35.1/0.91
	TWSC	NR	NR
	Eastbound	A/7.8/0.07	A/9.4/0.09
Deer Flat/ Locust Grove	Westbound	A/8.5/0.00	A/7.5/0.00
	Northbound	C/23.8/0.27	C/22.7/0.13
	Southbound	C/16.8/0.21	E/145.4/1.18
Deer Flat/ Locust Grove	Traffic Signal	B/14.0	C/27.3

	- m				
laka wasaki su	Traffic Control	AM	PM		
Intersection	Lane Group	LOS/Delay/v/c	LOS/Delay/v/c		
	Eastbound	A/4.2/0.23	C/20.5/0.45		
	Westbound	A/9.3/0.18	C/21.8/0.69		
	Northbound	D/39.1/0.66	D/40.0/0.11		
	Southbound	D/41.7/0.79	D/43.8/0.92		
	TWSC	NR	NR		
Hubbard/ Locust Grove	Eastbound	B/10.2/0.41	A/8.2/0.06		
·	Westbound	A/9.1/0.00	A/9.2/0.24		
	Northbound	Out of range	Out of range		
	Southbound	Out of range	F/974.4/2.94		
	Traffic Signal	B/11.1	C/23.0		
	Eastbound	A/5.3/0.36	B/14.0/0.71		
Hubbard/Locust Grove	Westbound	A/6.9/0.26	B/19.8/0.73		
	Northbound	D/37.7/0.78	D/35.5/0.16		
	Southbound	C/25.6/0.16	D/52.5/0.89		
	AWSC	F/66.2	F/124.5		
Columbia Rd/ Locust Grove	Eastbound	F/110.9/NR	C/20.7/NR		
	Westbound	B/13.7/NR	F/223.7/NR		
	Northbound	B/13.8/NR	B/12.9/NR		
	Southbound	B/13.5/NR	F/54.7/NR		
	Traffic Signal	B/19.2	C/26.8		
	Eastbound	B/13.5/0.70	C/22.0/0.73		
Columbia Rd/Locust Grove	Westbound	B/11.9/0.24	B/16.9/0.70		
olumbia Rd/ Locust Grove	Northbound	D/36.1/0.82	C/32.6/0.13		
	Southbound	C/31.8/0.54	D/42.7/0.94		
	AWSC	F/141.2	F/386.3		
	Eastbound	F/242.7/NR	F/79.8/NR		
Lake Hazel/ Locust Grove	Westbound	F/120.4/NR	F/370.7/NR		
	Northbound	F/95.1/NR	E/38.9/NR		
	Southbound	E/39.2/NR	F/638.3/NR		
	Traffic Signal	D/36.3	C/32.6		
	Eastbound	D/49.0/0.94	C/31.3/0.61		
Lake Hazel/ Locust Grove	Westbound	B/16.9/0.40	C/32.0/0.92		
	Northbound	C/30.7/0.90	C/32.7/0.55		
	Southbound	C/34.5/0.79	C/33.8/0.93		

For the 2025 background conditions, all intersections except Hubbard Road and SH69, fail to meet ACHD operational thresholds under existing traffic control. Where the projected overall LOS is D or worse, a signal warrant analysis was completed. This analysis indicates that one or more signal warrants would be met at each of these intersection locations. As a result, a traffic signal analysis was further performed at these locations and resulted in acceptable LOS conditions. A roundabout is assumed to be an acceptable improvement alternative in these cases. It should be further noted that

an interim AWSC condition at Deer Flat Road and Locust Grove Road, and Hubbard Road and Locust Grove Road does not achieve acceptable traffic conditions.

Table 9R - Roadway Segment LOS - 2025 Site Plus Background Traffic (replaces original Table 9)

Roadway Function		No. of Thru	Left-Turn		shold ume	AM Peak H Major Direc		PM Peak H Major Dire	
Segment	Class	Lanes	Treatment	LOS D	LOS E	Vol (vph)	LOS	Vol (vph)	LOS
Hubbard Rd, SH69 to Locust Grove Rd	Minor Arterial	1	Continuous LT Lane	675	720	1123/113 618*	< D	575/222 398*	< D
Hubbard Rd, Locust Grove to Eagle	Minor Arterial	1	Continuous LT Lane	675	720	572	< D	634	< D
Locust Grove Rd, Deer Flat to Hubbard	Minor Arterial	1	No LT Lane	540	575	240	< D	351	< D
Locust Grove Rd, Hubbard to Columbia	Minor Arterial	1	No LT Lane	540	575	273	< D	349	< D
Locust Grove Rd, Columbia to Lake Hazel	Minor Arterial	1	No LT Lane	540	575	490	< D	589	> E
Locust Grove Rd, Columbia to Lake Hazel	Minor Arterial	1	Continuous LT Lane	675	720	490	< D	589	< D
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	1	Continuous LT Lane	675	720	565	< D	970	>E
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	2	Continuous LT Lane	1395	1540	565	<d< td=""><td>970</td><td><d< td=""></d<></td></d<>	970	<d< td=""></d<>

^{*}Large volume discrepancy between intersections due to inconsistent growth rates. Average value used.

Two of six roadway segments do not meet desired operational thresholds under 2025 site plus background conditions. These locations include Locust Grove Road, Columbia Road to Lake Hazel Road; and Locust Grove Road, Lake Hazel Road to Amity Road. Incorporating an unrestricted median/continuous left-turn lane will mitigate conditions at Locust Grove Road, Columbia Road to Lake Hazel Road while additional lane capacity will be needed on Locust Grove Road, Lake Hazel Road to Amity Road.

Table 10R – Intersection Traffic Operations – 2025 Site Plus Background Traffic (replaces original Table 10)

	Traffic Control	AM	PM		
Intersection	Lane Group	LOS/Delay/v/c	LOS/Delay/v/c		
	Traffic Signal	D/38.8	C/33.7		
	Eastbound	C/30.9/0.49	D/37.1/0.32		
Hubbard Rd/ SH69	Westbound	D/43.1/0.39	D/46.6/0.39		
	Northbound	D/43.8/0.92	C/25.9/0.43		
	Southbound	C/30.7/0.51	D/35.2/0.91		
	TWSC	NR	NR		
	Eastbound	A/7.8/0.07	A/9.3/0.09		
Deer Flat/ Locust Grove	Westbound	A/8.4/0.00	A/7.5/0.00		
	Northbound	C/23.8/0.28	C/24.0/0.19		
	Southbound	C/18.1/0.26	F/140.9/1.17		
	Traffic Signal	B/16.4	C/29.0		
	Eastbound	A/6.9/0.24	B/18.3/0.44		
Deer Flat/ Locust Grove	Westbound	A/9.0/0.17	C/21.7/0.66		
	Northbound	D/42.2/0.60	D/45.9/0.15		
	Southbound	D/44.8/0.78	D/51.6/0.93		
	TWSC	NR	NR		
Hubbard/ Locust Grove	Eastbound	B/10.2/0.41	A/8.3/0.07		
	Westbound	A/9.2/0.01	A/9.5/0.27		
	Northbound	OUT OF RANGE	OUT OF RANGE		
	Southbound	OUT OF RANGE	OUT OF RANGE		
	Traffic Signal	C/25.7	C/32.1		
	Eastbound	C/21.0/0.52	C/25.9/0.78		
Hubbard/Locust Grove	Westbound	C/24.3/0.32	C/27.1/0.88		
	Northbound	D/39.1/0.87	D/36.2/0.30		
	Southbound	C/24.8/0.20	D/52.8/0.93		
	AWSC	F/89.5	F/166.8		
	Eastbound	F/163.9/NR	C/23.9/NR		
Columbia/ Locust Grove	Westbound	C/15.9/NR	F/261.5/NR		
	Northbound	C/19.1/NR	C/15.8/NR		
	Southbound	C/16.0/NR	F/153.4/NR		
	Traffic Signal	C/24.7	D/36.4		
<u>.</u>	Eastbound	C/22.2/0.71	D/40.8/0.90		
Columbia/Locust Grove	Westbound	A/6.7/0.25	C/25.6/0.85		
	Northbound	D/37.5/0.86	C/28.5/0.21		
	Southbound	C/32.0/0.49	D/42.9/0.95		
	Traffic Signal	D/36.6	D/44.7		
	Eastbound	D/48.8/0.92	D/42.4/0.63		
Lake Hazel/ Locust Grove	Westbound	C/25.9/0.29	D/50.5/0.96		
	Northbound	C/32.6/0.92	D/37.2/0.52		
	Southbound	C/28.7/0.71	D/44.0/0.96		

Intersection	Traffic Control Lane Group	AM LOS/Delay/v/c	PM LOS/Delay/v/c		
	TWSC	NR	NR		
Stroebel/ Hubbard	Eastbound	NR	NR		
	Westbound	B/11.4/0.02	A/8.9/0.03		
	Northbound	E/49.3/0.62	C/16.0/0.19		
	TWSC	NR	NR		
Locust Grove/ East Access	Eastbound	B/10.8/0.17	B/13.7/0.17		
(South of Rio Vallegas)	Northbound	A/7.5/0.00	A/8.5/0.01		
	Southbound	NR	NR		

All intersection locations under 2025 site plus background traffic conditions perform at an acceptable LOS and overall v/c ratio under the mitigation measures proposed under 2025 background conditions.

1.2 **COMMENT #2**

The background volumes appear to have been calculated based on 5 years of growth. The counts were collected in 2018 and the analysis is 2025, so 7 years of growth should have been added. This should be revised and resubmitted to staff for review.

Traffic counts were recorded in both 2018 and 2019, however 7 years of growth will be assumed at all locations to remain conservative.

1.3 **COMMENT #3**

The TIS states signal warrants are met under 2025 background conditions at Lake Hazel/Locust Grove. A roundabout is proposed in accordance with the ACHD CIP, however this intersection is not included in IFYWP, and therefore should be analyzed as a temporary signal and without improvements for 2025 total traffic conditions.

Acknowledged, will revise as requested. 2025 background conditions at Lake Hazel Road and Locust Grove Road under all-way-stop-control are at LOS F overall. This condition further deteriorates under 2025 site plus background conditions.

1.4 **COMMENT #4**

The signalized intersection analysis performed did not reflect ACHD Policy 7106. The base saturation flow should be 1800 vphpl, the cycle length should be 150 seconds, the yellow times need to be 5 seconds for approaches with posted speed above 40 mph, and red times need to be 1 second for all phases. The signalized intersection analysis should be revised and resubmitted.

Acknowledged, will revise as requested. 150 seconds assumed to mean maximum cycle length which was confirmed with ACHD.

1.5 **COMMENT #5**

The traffic impact study does not identify when the southbound right turn lane at the Locust Grove Rd/East Access will be needed to serve the site. Please provide this information to staff for review.

At Locust Grove Road and East Access - 2025 site plus background right turn volume is 121 vph in PM peak hour and meets right turn lane guidelines. This lane is needed at 27 vph, or approximately 22% of Buildout and development adjacent to Locust Grove Road (anticipated to occur in last phase).

At Hubbard Road and Stroebel – 2025 site plus background right turn volume is 107 vph in PM peak hour and meets right turn lane guidelines. This lane is needed at 30 vph, or approximately 28% of Buildout.

Left turn lanes are not warranted at either location.

1.6 **ADDITIONAL INFORMATION**

Revised figures are attached for 2025 background, 2025 site plus background, and site traffic percent increases vs. 2025 background volumes.

2.0 ATTACHMENTS:

ACHD review letter, Ledgestone South Traffic Impact Study, March 3, 2020

Revised Figure 4, Figure 6 and Figure 7

Associated HCS output reports, signal warrant review, and turn lane analysis

Mary May, President Kent Goldthorpe, Vice-President Rebecca W. Arnold, Commissioner Sara M. Baker, Commissioner Jim D. Hansen, Commissioner

March 3, 2020

Robert Beckman WH Pacific 2141 W. Airport Way, #104 Boise, ID 83705

Subject: Ledgestone South Traffic Impact Study

The Ada County Highway District staff has completed an initial review of the submitted traffic impact study (TIS) for the proposed Ledgestone South Subdivision. Comments/recommendations provided by District Traffic Services and Planning Review staff are listed below:

1. The TIS states that the same growth rates were used as the growths rates approved for the Patagonia Subdivision TIS completed by Thompson Engineers in 2018 rather than the rates shown in the COMPASS model. ACHD accepted those rates (10% growth on ACHD facilities, 4% on SH-69) specifically for the Patagonia Subdivision TIS and not for this TIS.

Staff is concerned with the use of this approach. The model run reviewed when the aforementioned rates were accepted would not have included substantial volumes from Patagonia Subdivision and from the initial Ledgestone Subdivision, which would have been included as part of model run for Ledgestone South.

Additionally, the use of this methodology to determine the growth rates was not approved by ACHD. You had corresponded with ACHD staff regarding the growth rates and were directed to use the growth rates derived from the COMPASS model and to apply them to existing counts (see attached emails). The study should be revised using the grow rates from the COMPASS model and resubmitted to staff for review.

- 2. The background volumes appear to have been calculated based on 5 years of growth. The counts were collected in 2018 and the analysis year is 2025, so 7 years of growth should have been added. This should be revised and resubmitted to staff for review.
- 3. The traffic impact study states that additional intersection control is needed at the Lake Hazel/Locust Grove intersection under 2025 background conditions and that the 4 hour signal warrant would be met at that time. It states that a roundabout is ultimately planned at this intersection and that it would work well as a roundabout, so a roundabout is assumed for future analysis.

This intersection is not included in the IFYWP and therefore is not scheduled for improvements within the next 5 years. A roundabout at this intersection is listed in the 2016 CIP for construction between 2026 and 2030, but this is subject to change. There is currently very limited right of way at the intersection. ACHD does not plan to construct a roundabout at this intersection before 2025 and one should not be assumed. The intersection should be analyzed

- as a temporary traffic signal and without improvements for 2025 total traffic conditions. This revised analysis should be submitted to staff for review.
- 4. The signalized intersection analysis performed for all intersections included in the traffic impact study was not completed correctly. The analysis needs to be completed in accordance with ACHD Policy Section 7106. The base saturation flow rate should be 1800 vphpl, the cycle length should be 150 seconds, the yellow times need to be 5 second for approaches with a posted speed above 40 mph, and the red times need to be 1 second for all phases. The signalized intersection analysis should be revised and resubmitted to staff for review.
- 5. The traffic impact study does not identify when the southbound right turn lane at the Locust Grove Rd/East Access will be needed to serve the site. Please provide this information to staff for review.

Please let me know if you have any questions.

Sincerely,

Mindy Wallace, AICP

Planning Review Supervisor

Murdpualace

Development Services

CC: Gem State Planning - Jane Suggs

Trilogy Development - Shawn Brownlee

Peak Hour Traffic Volumes

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RAB	Intersection	Locust Grove and Deer Fla							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	03/31/2020	East/West Street	Deer Flat							
Analysis Year	2025	North/South Street	Locust Grove Rd							
Time Analyzed	2025 AM Peak Hour Bkgrd	Peak Hour Factor	0.90							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Ledgestone South									

Lanes

Vehicle Volumes and Ad	justme	nts															
Approach	T	Eastk	oound			Westl	oound		Northbound			Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		92	455	20		0	149	13		10	44	10		14	17	44	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%))				0		
Right Turn Channelized																	
Median Type Storage				Undi	ivided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	T	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	T	102				0					71				83		
Capacity, c (veh/h)		1389				1034					261				389		
v/c Ratio		0.07				0.00					0.27				0.21		
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					1.1				0.8		
Control Delay (s/veh)		7.8				8.5					23.8				16.8		
Level of Service (LOS)		А				А					С				С		
Approach Delay (s/veh)		1	.9			0	.0	•		23.8				16.8			
Approach LOS											2			(С		

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analysis Date Apr 3, 2020 Analyst K Baker Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Deer Flat File Name LocustSignals-AM-2025Bkgrd.xus Intersection **Project Description** 2025 AM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement L R L R L R R 149 13 44 10 44 Demand (v), veh/h 92 455 20 0 10 14 17 **Signal Information** 11. Cycle, s 0.08 Reference Phase 6 Offset, s 0 Reference Point End 3.4 0.0 Green 44.3 4.0 4.3 0.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 4.0 1.2 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 60.3 0.0 50.3 9.4 10.2 9.5 10.3 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 0.0 3.1 3.2 3.1 3.2 Queue Clearance Time (g_s), s 2.0 2.5 4.7 2.7 5.4 Green Extension Time (g_e), s 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.2 Phase Call Probability 1.00 0.85 0.73 0.87 0.77 0.00 0.00 0.62 0.00 Max Out Probability 1.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т L R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 52 269 0 176 11 59 15 66 1674 1744 1674 1733 1674 1698 1674 1556 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 2.9 0.0 4.0 0.5 2.7 0.7 3.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.0 2.9 0.0 4.0 0.5 2.7 0.7 3.4 0.55 Green Ratio (g/C) 0.58 0.68 0.50 0.09 0.05 0.10 0.05 89 84 Capacity (c), veh/h 747 1184 661 960 161 188 Volume-to-Capacity Ratio (X) 0.070 0.227 0.000 0.183 0.067 0.658 0.081 0.793 Back of Queue (Q), ft/ln (95 th percentile) 18.1 39.9 0 66.5 8.7 53.8 12.1 63.9 Back of Queue (Q), veh/ln (95 th percentile) 0.7 1.6 0.0 2.6 0.3 2.1 0.5 2.5 Queue Storage Ratio (RQ) (95 th percentile) 0.18 0.00 0.00 0.00 0.03 0.00 0.04 0.00 Uniform Delay (d 1), s/veh 9.1 2.8 0.0 8.9 33.1 37.2 33.0 37.4 Incremental Delay (d 2), s/veh 0.0 0.4 0.0 0.4 0.1 3.1 0.1 6.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 9.1 3.2 0.0 9.3 33.2 40.3 33.1 43.6 Level of Service (LOS) Α Α Α С D С D 4.2 9.3 39.1 41.7 Approach Delay, s/veh / LOS Α Α D D Intersection Delay, s/veh / LOS 14.0 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.85 В 1.94 В 1.94 1.94 В В Bicycle LOS Score / LOS 1.50 В 0.78 Α 0.60 Α 0.62

	HCS7 Two-Way Stoր	o-Control Report							
General Information		Site Information							
Analyst	RAB	Intersection	Locust Grove and Deer Fla						
Agency/Co.	WHPacific	Jurisdiction							
Date Performed	03/31/2020	East/West Street	Deer Flat						
Analysis Year	2025	North/South Street	Locust Grove Rd						
Time Analyzed	2025 PM Peak Hour Bkgrd	Peak Hour Factor	0.90						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Ledgestone South								

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		76	132	3		3	604	13		0	24	3		17	102	224
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()		0			
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		84				3					30				381	
Capacity, c (veh/h)		903				1425					234				322	
v/c Ratio		0.09				0.00					0.13				1.18	
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.4				16.2	
Control Delay (s/veh)		9.4				7.5					22.7				145.4	
Level of Service (LOS)		A				А					С				F	
Approach Delay (s/veh)		4.0			0.1			22.7				145.4				
Approach LOS									С				F			

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analysis Date Apr 3, 2020 Analyst K Baker Area Type Other PHF Jurisdiction ACHD Time Period PM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Deer Flat File Name LocustSignals-PM-2025Bkgrd.xus Intersection **Project Description** 2025 PM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement L R L R R L R 604 13 Demand (v), veh/h 76 132 3 3 0 24 3 17 102 224 110 **Signal Information** Ж Cycle, s 110.0 Reference Phase 6 542 Offset, s 0 Reference Point End 4.0 4.0 17.1 0.0 Green 4.0 50.9 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 5.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 4.0 1.2 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 66.9 10.0 66.9 0.0 23.1 10.0 33.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 0.0 3.3 3.1 3.3 Queue Clearance Time (g_s), s 2.0 2.1 3.6 3.0 26.3 Green Extension Time (g_e), s 0.3 0.0 0.0 0.0 0.0 8.0 0.0 8.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 0.54 0.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 144 256 3 671 0 29 18 354 1674 1751 1674 1751 1674 1723 1674 1564 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 0.1 30.5 0.0 1.0 24.3 Queue Service Time (g_s), s 8.8 1.6 Cycle Queue Clearance Time (q c), s 0.0 8.8 0.1 30.5 0.0 1.6 1.0 24.3 0.48 Green Ratio (g/C) 0.55 0.52 0.55 0.10 0.16 0.21 0.25 969 Capacity (c), veh/h 323 553 970 75 268 319 385 Volume-to-Capacity Ratio (X) 0.446 0.264 0.006 0.692 0.000 0.110 0.058 0.920 Back of Queue (Q), ft/ln (95 th percentile) 134.6 145.3 1.8 469.3 0 31.5 18.2 374.2 Back of Queue (Q), veh/ln (95 th percentile) 5.3 5.7 0.1 18.3 0.0 1.2 0.7 14.6 Queue Storage Ratio (RQ) (95 th percentile) 1.35 0.00 0.02 0.00 0.00 0.00 0.06 0.00 39.9 Uniform Delay (d 1), s/veh 31.9 13.5 13.4 17.8 0.0 34.8 40.4 Incremental Delay (d 2), s/veh 0.2 0.4 0.0 4.0 0.0 0.1 0.0 3.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 32.1 13.9 13.4 21.8 0.0 40.0 34.8 44.3 Level of Service (LOS) С В В С D С D 20.5 С 21.8 С 40.0 43.8 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 27.3 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.89 В 1.96 В 1.94 1.94 В В Bicycle LOS Score / LOS 0.87 Α 1.60 0.54 Α 1.10 Α

	HCS7 Two-Way Stop	p-Control Report							
General Information		Site Information							
Analyst	RAB	Intersection	Locust Grove and Hubbard						
Agency/Co.	WHPacific	Jurisdiction							
Date Performed	03/31/2020	East/West Street	Hubbard Rd						
Analysis Year	2025	North/South Street	Locust Grove Rd						
Time Analyzed	2025 AM Peak Hour Bkgrd	Peak Hour Factor	0.90						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Ledgestone South								

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		436	530	125		0	281	62		0	129	3		3	37	17
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		484				0					147				63	
Capacity, c (veh/h)		1172				871										
v/c Ratio		0.41				0.00										
95% Queue Length, Q ₉₅ (veh)		2.1				0.0										
Control Delay (s/veh)		10.2				9.1										
Level of Service (LOS)		В				А										
Approach Delay (s/veh)	8.5			0.0												
Approach LOS																

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analysis Date Apr 3, 2020 Analyst K Baker Area Type Other Jurisdiction ACHD Time Period AM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Hubbard File Name LocustSignals-AM-2025Bkgrd.xus Intersection **Project Description** 2025 AM Peak Bkgrd **Demand Information** EB **WB** NB SB Approach Movement R L R R L R 530 62 Demand (v), veh/h 436 125 0 281 0 129 3 3 37 17 **Signal Information** Ж. Cycle, s 0.08 Reference Phase 6 Offset, s 0 Reference Point End Green 5.0 0.0 39.6 3.0 8.4 0.0 Uncoordinated No Simult. Gap E/W On 5.0 Yellow 5.0 5.0 5.0 0.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 11.0 56.6 0.0 45.6 0.0 14.4 9.0 23.4 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 0.0 0.0 3.1 3.1 3.1 Queue Clearance Time (g_s), s 7.0 8.4 2.1 4.3 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 Phase Call Probability 1.00 0.96 0.75 0.73 1.00 0.00 1.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т L R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 259 389 0 221 0 143 3 59 1674 1698 1674 1702 1674 1750 1674 1664 Adjusted Saturation Flow Rate (s), veh/h/ln 5.0 3.4 0.0 3.6 0.0 6.4 0.1 2.3 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 5.0 3.4 0.0 3.6 0.0 6.4 0.1 2.3 0.22 Green Ratio (g/C) 0.58 0.63 0.42 0.50 0.03 0.10 0.17 Capacity (c), veh/h 713 1075 581 843 232 183 183 361 Volume-to-Capacity Ratio (X) 0.363 0.362 0.000 0.262 0.000 0.783 0.018 0.163 Back of Queue (Q), ft/ln (95 th percentile) 83.7 44.2 0 57.6 0 127.5 2.3 40.4 Back of Queue (Q), veh/ln (95 th percentile) 3.3 1.7 0.0 2.2 0.0 5.0 0.1 1.6 Queue Storage Ratio (RQ) (95 th percentile) 0.84 0.00 0.00 0.00 0.00 0.00 0.01 0.00 Uniform Delay (d 1), s/veh 9.0 2.1 0.0 6.2 0.0 34.9 28.2 25.4 Incremental Delay (d 2), s/veh 0.1 0.7 0.0 0.7 0.0 2.8 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 9.1 2.8 0.0 6.9 0.0 37.7 28.3 25.5 Level of Service (LOS) Α Α D С С Α 5.3 37.7 25.6 С Approach Delay, s/veh / LOS Α 6.9 Α D Intersection Delay, s/veh / LOS 11.1 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.87 В В 1.94 1.93 1.89 В В Bicycle LOS Score / LOS 2.44 В 1.10 Α 0.72 Α 0.59 Α

	HCS7 Two-Way Stop	o-Control Report						
General Information		Site Information						
Analyst	RAB	Intersection	Locust Grove and Hubbard					
Agency/Co.	WHPacific	Jurisdiction						
Date Performed	03/31/2020	East/West Street	Hubbard Rd					
Analysis Year	2025	North/South Street	Locust Grove Rd					
Time Analyzed	2025 PM Peak Hour Bkgrd	Peak Hour Factor	0.93					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Ledgestone South							

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		62	281	125		250	343	0		7	54	10		0	218	24
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		67				269					76				260	
Capacity, c (veh/h)		1184				1118									89	
v/c Ratio		0.06				0.24									2.94	
95% Queue Length, Q ₉₅ (veh)		0.2				0.9									25.3	
Control Delay (s/veh)		8.2				9.2									974.4	
Level of Service (LOS)		А				Α									F	
Approach Delay (s/veh)	1.6			5.5							974.4					
Approach LOS														F		

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analysis Date Apr 3, 2020 Analyst K Baker Area Type Other Jurisdiction ACHD Time Period PM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Hubbard File Name LocustSignals-PM-2025Bkgrd.xus Intersection **Project Description** 2025 PM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement L R L R R R 343 10 Demand (v), veh/h 62 281 125 250 0 54 0 218 24 **Signal Information** 21. Cycle, s 120.0 Reference Phase 6 242 Offset, s 8 Reference Point End Green 5.2 0.0 3.8 56.8 3.7 20.5 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 0.0 5.0 5.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 11.2 62.8 21.0 72.6 9.7 36.2 0.0 26.5 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 0.0 3.1 Queue Clearance Time (g_s), s 5.1 15.7 2.4 5.8 19.9 Green Extension Time (g_e), s 0.1 0.0 0.0 0.0 0.0 0.6 0.0 0.6 Phase Call Probability 1.00 1.00 0.92 0.90 1.00 0.00 1.00 0.00 0.00 Max Out Probability 0.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R Т L R **Assigned Movement** 5 2 12 16 3 8 18 7 4 14 1 6 Adjusted Flow Rate (v), veh/h 86 562 379 0 8 70 0 263 1674 1663 1674 1674 1709 1674 1727 Adjusted Saturation Flow Rate (s), veh/h/ln 0 3.1 20.7 13.7 0.0 0.4 3.8 0.0 Queue Service Time (g_s), s 17.9 Cycle Queue Clearance Time (q c), s 3.1 20.7 13.7 0.0 0.4 3.8 0.0 17.9 Green Ratio (g/C) 0.52 0.47 0.62 0.22 0.25 0.12 0.17 424 430 Capacity (c), veh/h 787 523 136 287 295 Volume-to-Capacity Ratio (X) 0.202 0.714 0.726 0.000 0.056 0.162 0.000 0.893 Back of Queue (Q), ft/ln (95 th percentile) 56.7 207.3 202.6 8.2 73.4 0 321 0 Back of Queue (Q), veh/ln (95 th percentile) 2.2 8.1 7.9 0.0 0.3 2.9 0.0 12.5 Queue Storage Ratio (RQ) (95 th percentile) 0.28 0.00 1.01 0.00 0.03 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 16.7 9.6 15.2 38.5 35.1 0.0 48.7 Incremental Delay (d 2), s/veh 0.1 3.9 2.6 0.0 0.1 0.1 0.0 3.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 16.8 13.6 17.9 38.6 35.1 0.0 52.5 Level of Service (LOS) В В В D D D 14.0 В 35.5 52.5 Approach Delay, s/veh / LOS В 19.8 D D Intersection Delay, s/veh / LOS 23.0 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.91 В 1.90 В 1.94 1.95 В В Bicycle LOS Score / LOS 1.33 Α 1.55 0.61 Α 0.92 Α

	HCS7 All-Way Stop Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust_Columbia									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	03/31/2020	East/West Street	Columbia Rd									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.92									
Time Analyzed	2025 AM Peak Hour Bkgrd											
Project Description	Ledgestone South											

Vehicle Volume and Adjust	ments											
Approach		Eastbound	l		Westbound	t	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	146	506	10	10	170	36	14	139	24	61	54	54
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	720			235			192			184		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.640			0.209			0.171			0.163		
Final Departure Headway, hd (s)	5.81			6.33			6.87			6.85		
Final Degree of Utilization, x	1.161			0.413			0.367			0.350		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	3.81			4.33			4.87			4.85		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	720			235			192			184		
Capacity	620			568			524			526		
95% Queue Length, Q ₉₅ (veh)	23.8			2.0			1.7			1.6		
Control Delay (s/veh)	110.9			13.7			13.8			13.5		
Level of Service, LOS	F			В			В			В		
Approach Delay (s/veh)		110.9			13.7		13.8					
Approach LOS		F		В В			В					
Intersection Delay, s/veh LOS			66	5.2						F		

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other Jurisdiction ACHD Time Period AM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Columbia File Name LocustSignals-AM-2025Bkgrd.xus Intersection **Project Description** 2025 AM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement L R L R L R R 36 Demand (v), veh/h 146 506 10 10 170 14 139 24 61 54 54 **Signal Information** Ж JI. Cycle, s 0.08 Reference Phase 6 Offset, s 39 Reference Point End 0.6 Green 4.0 4.0 4.0 10.2 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 5.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 4.0 1.2 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 43.2 10.0 43.2 10.0 16.2 10.6 16.8 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 2.0 2.2 2.6 10.1 4.7 7.4 Green Extension Time (g_e), s 1.4 0.0 0.0 0.0 0.0 0.3 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 0.98 0.99 0.93 0.01 0.00 0.00 0.00 1.00 1.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 160 567 9 190 15 177 66 117 1674 1752 1674 1704 1674 1711 1674 1613 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 15.9 0.2 4.8 0.6 2.7 5.4 Queue Service Time (g_s), s 8.1 Cycle Queue Clearance Time (q c), s 0.0 15.9 0.2 4.8 0.6 8.1 2.7 5.4 Green Ratio (g/C) 0.37 0.47 0.41 0.46 0.18 0.13 0.19 0.14 Capacity (c), veh/h 546 814 292 792 227 217 218 218 Volume-to-Capacity Ratio (X) 0.293 0.696 0.032 0.240 0.067 0.815 0.304 0.539 Back of Queue (Q), ft/ln (95 th percentile) 95.2 170.8 4.1 81.3 10.9 156.2 48.4 98 Back of Queue (Q), veh/ln (95 th percentile) 3.7 6.7 0.2 3.2 0.4 6.1 1.9 3.8 Queue Storage Ratio (RQ) (95 th percentile) 0.95 0.00 0.04 0.00 0.04 0.00 0.16 0.00 34.0 Uniform Delay (d 1), s/veh 18.9 9.6 15.0 11.1 27.6 28.1 32.3 Incremental Delay (d 2), s/veh 0.1 2.4 0.0 0.7 0.0 2.8 0.3 1.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 19.0 12.0 15.0 11.8 27.7 36.8 28.4 33.7 Level of Service (LOS) В В В В С D С С 11.9 13.5 36.1 С Approach Delay, s/veh / LOS В В D 31.8 Intersection Delay, s/veh / LOS 19.2 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.90 В 1.94 В 1.93 1.93 В В Bicycle LOS Score / LOS 1.67 В 0.87 Α 0.81 Α 0.79

	HCS7 All-Way Stop Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust_Columbia									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	03/31/2020	East/West Street	Columbia Rd									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.92									
Time Analyzed	2025 PM Peak Hour Bkgrd											
Project Description	Ledgestone South											

Vehicle Volume and Adjust	ments											
Approach		Eastbound	l	,	Westbound	d	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	36	223	10	24	622	46	7	37	20	54	197	231
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	292			752			70			524		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and Se	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.260			0.669			0.062			0.466		
Final Departure Headway, hd (s)	7.36			6.84			8.30			6.60		
Final Degree of Utilization, x	0.598			1.430			0.160			0.960		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	5.36			4.84			6.30			4.60		
Capacity, Delay and Level o	f Servic	e										
Flow Rate, v (veh/h)	292			752			70			524		
Capacity	489			526			434			546		
95% Queue Length, Q ₉₅ (veh)	3.9			36.1			0.6			12.7		
Control Delay (s/veh)	20.7			223.7			12.9			54.7		
Level of Service, LOS	С			F			В			F		
Approach Delay (s/veh)		20.7			223.7		12.9			54.7		
Approach LOS		C F				B F						
Intersection Delay, s/veh LOS			12	4.5						F		

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other Jurisdiction ACHD Time Period PM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Columbia File Name LocustSignals-PM-2025Bkgrd.xus Intersection **Project Description** 2025 PM Peak Bkgrd **Demand Information** EB **WB** NB SB Approach Movement R L R L R L R 622 46 Demand (v), veh/h 36 223 10 24 7 37 20 54 197 231 **Signal Information** Ж وذلك Cycle, s 120.0 Reference Phase 6 Offset, s 0 Reference Point End 3.5 52.7 3.4 33.7 Green 1.9 0.9 Uncoordinated No Simult. Gap E/W On Yellow 5.0 0.0 5.0 5.0 0.0 5.0 Force Mode Float Simult. Gap N/S On Red 0.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 11.3 62.1 7.9 58.7 6.9 39.7 10.3 43.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.2 3.1 3.2 Queue Clearance Time (g_s), s 5.6 2.8 2.4 5.4 5.0 35.9 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.0 1.1 0.0 1.1 Phase Call Probability 0.95 0.47 0.22 1.00 0.86 1.00 0.79 0.29 0.00 1.00 0.00 Max Out Probability 0.17 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 92 593 19 535 8 62 59 465 1674 1744 1674 1736 1674 1652 1674 1602 Adjusted Saturation Flow Rate (s), veh/h/ln 3.6 28.6 8.0 20.9 0.4 3.4 3.0 33.9 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 3.6 28.6 8.0 20.9 0.4 3.4 3.0 33.9 0.28 Green Ratio (g/C) 0.48 0.47 0.45 0.44 0.29 0.32 0.31 464 495 Capacity (c), veh/h 363 816 260 762 81 456 Volume-to-Capacity Ratio (X) 0.253 0.727 0.074 0.702 0.094 0.134 0.129 0.940 Back of Queue (Q), ft/ln (95 th percentile) 64.9 388.6 13.8 242.3 7.4 62.2 55.3 503.4 Back of Queue (Q), veh/ln (95 th percentile) 2.5 15.2 0.5 9.5 0.3 2.4 2.2 19.7 Queue Storage Ratio (RQ) (95 th percentile) 0.65 0.00 0.14 0.00 0.02 0.00 0.18 0.00 Uniform Delay (d 1), s/veh 19.4 18.1 21.5 12.4 35.0 32.2 29.1 40.4 Incremental Delay (d 2), s/veh 0.1 4.3 0.0 4.4 0.2 0.0 0.0 4.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 19.5 22.4 21.5 16.8 35.2 32.3 29.2 44.4 Level of Service (LOS) В С С В D С С D 22.0 С 16.9 32.6 С 42.7 Approach Delay, s/veh / LOS В D Intersection Delay, s/veh / LOS С 26.8 **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.91 В 1.92 В 1.94 1.93 В В Bicycle LOS Score / LOS 0.97 Α 1.73 0.60 Α 1.35 Α

	HCS7 All-Way Stop Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust_Lake Hazel									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	03/31/2020	East/West Street	Lake Hazel Rd									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.92									
Time Analyzed	2025 AM Peak Hour Bkgrd											
Project Description	Ledgestone South											

Vehicle Volume and Adjust	tments											
Approach		Eastbound	ļ	,	Westbound	ł	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	29	499	5	14	319	93	10	347	37	133	109	24
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	579			463			428			289		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.515			0.412			0.381			0.257		
Final Departure Headway, hd (s)	9.04			8.92			8.99			9.66		
Final Degree of Utilization, x	1.456			1.147			1.069			0.776		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	7.04			6.92			6.99			7.66		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	579			463			428			289		
Capacity	398			404			401			373		
95% Queue Length, Q ₉₅ (veh)	29.9			17.4			14.5			6.4		
Control Delay (s/veh)	242.7			120.4			95.1			39.2		
Level of Service, LOS	F			F			F			E		
Approach Delay (s/veh)		242.7		120.4		95.1			39.2			
Approach LOS		F	F					F		E		
Intersection Delay, s/veh LOS			14	1.2						F		

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Lake Hazel File Name LocustSignals-AM-2025Bkgrd.xus Intersection **Project Description** 2025 AM Peak Bkgrd **Demand Information** EB **WB** NB SB Approach Movement R L R L R L R 499 93 Demand (v), veh/h 29 5 14 319 10 347 37 133 109 24 **Signal Information** Ж. Cycle, s 0.08 Reference Phase 6 517 Offset, s 18 Reference Point End 26.6 0.0 0.0 Green 4.0 4.0 21.4 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 32.6 10.0 32.6 10.0 27.4 10.0 27.4 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 2.9 2.2 2.4 20.7 6.0 7.4 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.1 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 0.96 0.03 0.01 0.00 0.00 1.00 1.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 32 548 8 223 11 417 145 145 Adjusted Saturation Flow Rate (s), veh/h/ln 1674 1755 1674 1689 1674 1728 1674 1703 0.9 24.2 0.2 6.5 0.4 18.7 4.0 5.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.9 24.2 0.2 6.5 0.4 18.7 4.0 5.4 0.27 0.32 0.27 Green Ratio (g/C) 0.38 0.33 0.38 0.33 0.32 Capacity (c), veh/h 461 583 177 561 420 463 183 456 Volume-to-Capacity Ratio (X) 0.068 0.940 0.043 0.398 0.026 0.902 0.790 0.317 Back of Queue (Q), ft/ln (95 th percentile) 15.8 497 4 113.2 6.1 310.1 86.1 96.5 Back of Queue (Q), veh/ln (95 th percentile) 0.6 19.4 0.2 4.4 0.2 12.1 3.4 3.8 Queue Storage Ratio (RQ) (95 th percentile) 0.16 0.00 0.04 0.00 0.02 0.00 0.29 0.00 26.4 Uniform Delay (d 1), s/veh 15.8 25.9 20.5 14.8 18.9 28.3 23.4 Incremental Delay (d 2), s/veh 0.0 25.0 0.0 2.0 0.0 2.7 18.9 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 15.9 50.9 20.6 16.8 18.9 31.0 45.4 23.6 Level of Service (LOS) В D С В В С D С 49.0 16.9 30.7 С 34.5 С Approach Delay, s/veh / LOS D В Intersection Delay, s/veh / LOS 36.3 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.91 В 1.91 В 1.92 1.92 В В Bicycle LOS Score / LOS 1.44 Α 1.25 Α 1.19 Α 0.96

HCS7 All-Way Stop Control Report									
General Information		Site Information							
Analyst	RAB	Intersection	Locust_Lake Hazel						
Agency/Co.	WHPacific	Jurisdiction							
Date Performed	03/31/2020	East/West Street	Lake Hazel Rd						
Analysis Year	2025	North/South Street	Locust Grove Rd						
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.92						
Time Analyzed	2025 PM Peak Hour Bkgrd								
Project Description Ledgestone South									

Vehicle Volume and Adjustments												
Approach		Eastbound		,	Westbound	t	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	13	354	5	23	505	122	20	218	31	245	547	71
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	404			707			292			938		
Percent Heavy Vehicles	3			3	3					3		
Departure Headway and Service Time												
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.359			0.628			0.260			0.834		
Final Departure Headway, hd (s)	9.04			8.94			9.56			9.05		
Final Degree of Utilization, x	1.015			1.754			0.777			2.358		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	7.04			6.94			7.56			7.05		
Capacity, Delay and Level o	f Servic	е										
Flow Rate, v (veh/h)	404			707			292			938		
Capacity	398			403			377			398		
95% Queue Length, Q ₉₅ (veh)	12.7			44.0			6.5			72.4		
Control Delay (s/veh)	79.8			370.7			38.9			638.3		
Level of Service, LOS	F			F			E			F		
Approach Delay (s/veh)		79.8		370.7				38.9			638.3	
Approach LOS		F	_	F			E F					
Intersection Delay, s/veh LOS			38	36.3			F					

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other Jurisdiction ACHD Time Period PM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Lake Hazel File Name LocustSignals-PM-2025Bkgrd.xus Intersection **Project Description** 2025 PM Peak Bkgrd **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 505 547 Demand (v), veh/h 13 354 5 23 122 20 218 31 245 71 **Signal Information** 11 JI. Cycle, s 100.0 Reference Phase 6 542 Offset, s 3 Reference Point End 1.3 5.9 24.4 Green 2.1 28.4 1.8 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 5.0 5.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 1.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 3.0 1.2 3.0 1.1 3.0 1.1 3.0 Phase Duration, s 7.3 41.7 8.1 42.5 7.8 30.4 19.8 42.4 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 2.0 3.1 3.0 13.8 13.3 34.5 Green Extension Time (g_e), s 0.4 0.0 0.0 0.0 0.0 1.8 0.4 1.8 Phase Call Probability 0.32 0.52 0.45 1.00 1.00 1.00 0.28 0.00 0.00 0.00 Max Out Probability 1.00 0.00 SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 14 385 5 27 588 142 22 237 34 266 595 77 1674 1758 1515 1674 1758 1490 1674 1758 1522 1674 1758 1373 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 18.0 0.2 1.1 1.0 11.8 1.7 11.3 32.5 3.8 Queue Service Time (g_s), s 31.4 8.3 Cycle Queue Clearance Time (q c), s 0.0 18.0 0.2 1.1 31.4 8.3 1.0 11.8 1.7 11.3 32.5 3.8 0.28 0.36 0.36 0.37 0.26 0.24 0.24 Green Ratio (g/C) 0.33 0.37 0.40 0.36 0.36 429 Capacity (c), veh/h 119 628 541 210 642 544 117 372 446 639 499 Volume-to-Capacity Ratio (X) 0.119 0.613 0.010 0.127 0.916 0.261 0.185 0.552 0.091 0.597 0.930 0.155 Back of Queue (Q), ft/ln (95 th percentile) 15.8 324.5 3.8 19.7 453.4 114.4 18 220 27.9 197.9 534.9 54.4 Back of Queue (Q), veh/ln (95 th percentile) 0.6 12.7 0.2 8.0 17.7 4.5 0.7 8.6 1.1 7.7 20.9 2.2 Queue Storage Ratio (RQ) (95 th percentile) 0.16 0.00 0.00 0.20 0.00 0.46 0.06 0.00 0.00 0.66 0.00 0.00 Uniform Delay (d 1), s/veh 46.5 26.4 20.7 25.1 27.0 9.5 30.2 33.0 29.2 22.5 30.6 29.0 Incremental Delay (d 2), s/veh 0.2 4.4 0.0 0.0 10.6 0.5 0.3 0.4 0.0 0.5 8.6 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 46.7 30.9 20.8 25.2 37.6 10.1 30.5 33.4 29.2 23.0 39.2 29.1 Level of Service (LOS) D С С С D В С С С С D С 31.3 С 32.0 С 32.7 С 33.8 С Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 32.6 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.11 В 2.14 В 2.12 В 2.11 В Bicycle LOS Score / LOS 1.15 Α 1.65 0.97 Α 2.04

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date 8/23/2019 Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.91 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 7:00 Meridian and Hubbard File Name Meridian&Hubbard-AM-2025Bkgrd.xus Intersection **Project Description** 2025 AM Peak Bkgrd **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 62 Demand (v), veh/h 173 31 18 22 10 12 1136 10 34 421 55 **Signal Information** Ж. Cycle, s 70.0 Reference Phase 6 517 Offset, s 0 Reference Point End 9.8 0.0 Green 4.0 4.0 28.2 0.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 0.0 **Timer Results** FBI **EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 15.8 10.0 15.8 10.0 34.2 10.0 34.2 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g_s), s 6.0 2.8 2.3 25.4 2.9 9.5 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.0 2.8 0.0 3.9 Phase Call Probability 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.46 1.00 0.02 Max Out Probability 1.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 190 54 24 79 13 631 629 37 266 257 1674 1642 1674 1522 1674 1758 1752 1674 1758 1687 Adjusted Saturation Flow Rate (s), veh/h/ln 4.0 2.0 8.0 3.3 0.3 23.4 23.4 0.9 7.5 7.5 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 4.0 2.0 8.0 3.3 0.3 23.4 23.4 0.9 7.5 7.5 0.20 Green Ratio (g/C) 0.14 0.20 0.14 0.46 0.40 0.40 0.46 0.40 0.40 Capacity (c), veh/h 321 231 309 214 431 707 705 228 707 679 Volume-to-Capacity Ratio (X) 0.593 0.233 0.078 0.370 0.031 0.892 0.892 0.164 0.376 0.379 Back of Queue (Q), ft/ln (95 th percentile) 57.1 41.8 14.2 65.6 4.6 398.2 388.2 13.3 123.9 117.5 Back of Queue (Q), veh/ln (95 th percentile) 2.2 1.6 0.6 2.6 0.2 15.6 15.5 0.5 4.8 4.7 Queue Storage Ratio (RQ) (95 th percentile) 0.57 0.00 0.14 0.00 0.02 0.00 0.00 0.04 0.00 0.00 Uniform Delay (d 1), s/veh 27.1 26.7 23.0 27.3 11.0 19.5 19.5 14.7 14.7 14.8 Incremental Delay (d 2), s/veh 2.0 2.4 0.0 4.9 0.0 9.8 9.8 0.1 0.1 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 29.1 29.1 23.0 32.1 11.0 29.3 29.3 14.9 14.9 14.9 Level of Service (LOS) С С С С В С С В В В 29.1 С 30.0 C 29.1 С 14.9 В Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 25.5 С

martin out i rootilo	_			, _		10			
Pedestrian LOS Score / LOS	2.29	В	2.29	В	1.90	В	1.90	В	
Bicycle LOS Score / LOS	0.89	А	0.66	Α	1.54	В	0.95	А	

FR

Multimodal Results

WB

SB

NR

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other ΡМ PHF Jurisdiction ACHD Time Period 0.92 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 5:00 Meridian and Hubbard File Name Meridian&Hubbard-PM-2025Bkgrd.xus Intersection ጎ ተ ተ ሶ **Project Description** 2025 PM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement L R L R L R R Demand (v), veh/h 87 18 36 20 15 71 38 631 24 74 1361 355 **Signal Information** Ж وذلك Cycle, s 150.0 Reference Phase 2 Offset, s 0 Reference Point Begin 5.5 Green 2.4 42.1 2.4 70.3 3.3 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 0.0 0.0 5.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 1 7 4 Case Number 1.1 4.0 1.1 4.0 1.1 3.0 1.1 3.0 Phase Duration, s 13.9 53.6 8.4 48.1 9.3 76.3 11.7 78.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 7.9 3.4 3.9 22.5 5.7 63.2 Green Extension Time (g_e), s 0.2 0.0 0.0 0.0 0.1 9.6 0.1 9.5 Phase Call Probability 0.98 0.60 0.82 1.00 0.96 1.00 0.00 0.00 0.00 0.00 0.01 Max Out Probability 0.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 95 59 22 93 41 686 26 80 1479 386 Adjusted Saturation Flow Rate (s), veh/h/ln 1674 1564 1674 1530 1674 1674 1524 1674 1674 1525 5.9 4.0 1.4 7.0 1.9 20.5 1.4 3.7 26.2 Queue Service Time (g_s), s 61.2 Cycle Queue Clearance Time (q c), s 5.9 4.0 1.4 7.0 1.9 20.5 1.4 3.7 61.2 26.2 0.32 0.30 0.28 0.47 Green Ratio (g/C) 0.34 0.49 0.47 0.51 0.48 0.48 496 444 429 Capacity (c), veh/h 438 107 1569 715 360 1623 740 Volume-to-Capacity Ratio (X) 0.216 0.118 0.049 0.218 0.385 0.437 0.037 0.223 0.912 0.522 Back of Queue (Q), ft/In (95 th percentile) 112.2 74.2 26.7 129.6 36.4 330.7 22.7 68.3 846.1 364.4 Back of Queue (Q), veh/ln (95 th percentile) 4.4 2.9 1.0 5.1 1.4 12.9 0.9 2.7 33.0 14.6 Queue Storage Ratio (RQ) (95 th percentile) 1.12 0.00 0.27 0.00 0.12 0.00 0.00 0.23 0.00 0.00 Uniform Delay (d 1), s/veh 34.5 36.3 37.6 41.3 33.9 26.6 21.5 20.7 35.7 26.6 Incremental Delay (d 2), s/veh 0.1 0.5 0.0 1.2 8.0 0.1 0.0 0.1 2.4 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 34.6 36.8 37.6 42.5 34.7 26.7 21.5 20.9 38.1 26.9 Level of Service (LOS) С D D D С С С С D С 35.5 41.6 26.9 С 35.1 D Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 33.3 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.45 В 2.46 В 1.92 1.92 В В

Bicycle LOS Score / LOS

Α

1.11

Α

0.74

Α

2.09

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RAB	Intersection	Locust Grove and Deer Fla							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	3/31/2020	East/West Street	Deer Flat							
Analysis Year	2025	North/South Street	Locust Grove Rd							
Time Analyzed	2025 AM Peak Hour Total	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Ledgestone South									

Vehicle Volumes and Adjustments																
Approach		Eastb	ound			Westl	oound		Northbound					South	bound	
Movement	U	L	Т	R	U	U L T R		U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		92	455	20		0	149	13		10	49	10		14	29	44
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		100				0					75				95	
Capacity, c (veh/h)		1394				1044					266				368	
v/c Ratio		0.07				0.00					0.28				0.26	
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					1.1				1.0	
Control Delay (s/veh)		7.8				8.4					23.8				18.1	
Level of Service (LOS)		A A				С						С				
Approach Delay (s/veh)	1.9			0.0			23.8				18.1					
Approach LOS									С				С			

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Deer Flat File Name LocustSignals-AM-2025Total.xus Intersection **Project Description** 2025 AM Peak Total WB **Demand Information** EB NB SB Approach Movement L R L R R R 149 13 10 44 Demand (v), veh/h 92 455 20 0 10 49 14 29 JI. **Signal Information** 11 Cycle, s 90.0 Reference Phase 6 512 Offset, s 0 Reference Point End Green 52.7 4.0 0.1 5.6 0.0 3.6 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 0.0 5.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 0.0 1.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 4.0 1.2 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 68.7 0.0 58.7 9.6 11.6 9.7 11.8 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 0.0 3.1 3.2 3.1 3.2 Queue Clearance Time (g_s), s 2.0 2.5 5.3 2.7 6.4 Green Extension Time (g_e), s 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.2 Phase Call Probability 1.00 0.90 0.80 0.93 0.86 0.00 0.00 0.00 0.00 Max Out Probability 0.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т L R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 56 291 0 176 11 64 15 79 1674 1744 1674 1733 1674 1703 1674 1586 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 6.3 0.0 4.2 0.5 3.3 0.7 4.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.0 6.3 0.0 4.2 0.5 3.3 0.7 4.4 0.70 0.59 Green Ratio (g/C) 0.61 0.54 0.10 0.06 0.10 0.06 Capacity (c), veh/h 773 1215 637 1014 147 106 183 101 Volume-to-Capacity Ratio (X) 0.073 0.240 0.000 0.174 0.074 0.603 0.083 0.783 Back of Queue (Q), ft/ln (95 th percentile) 22.6 93.9 0 70.4 9.9 65.2 13.8 84.4 Back of Queue (Q), veh/ln (95 th percentile) 0.9 3.7 0.0 2.8 0.4 2.5 0.5 3.3 Queue Storage Ratio (RQ) (95 th percentile) 0.23 0.00 0.00 0.00 0.03 0.00 0.05 0.00 36.5 Uniform Delay (d 1), s/veh 9.6 6.0 0.0 8.6 36.7 41.1 41.5 Incremental Delay (d 2), s/veh 0.0 0.4 0.0 0.4 0.1 2.0 0.1 4.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 9.6 6.4 0.0 9.0 36.8 43.1 36.6 46.4 Level of Service (LOS) Α Α Α D D D D 6.9 9.0 42.2 44.8 Approach Delay, s/veh / LOS Α Α D D Intersection Delay, s/veh / LOS 16.4 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.85 В 1.95 В 1.94 1.94 В В Bicycle LOS Score / LOS 1.50 В 0.78 Α 0.61 Α 0.64 Α

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RAB	Intersection	Locust Grove and Deer Fla							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	03/31/2020	East/West Street	Deer Flat							
Analysis Year	2025	North/South Street	Locust Grove Rd							
Time Analyzed	2025 PM Peak Hour Total	Peak Hour Factor	0.92							
Intersection Orientation	East-West Analysis Time Period (hrs) 0.25									
Project Description	roject Description Ledgestone South									

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westk	oound		Northbound					South	bound	
Movement	U	L	Т	R	U	U L T R		U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		76	132	3		3	604	13		0	38	3		17	110	224
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	itical and Follow-up Headways															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T	83				3					45				382	
Capacity, c (veh/h)		915				1429					234				325	
v/c Ratio		0.09				0.00					0.19				1.17	
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.7				16.0	
Control Delay (s/veh)		9.3				7.5					24.0				140.9	
Level of Service (LOS)		A				Α			С						F	
Approach Delay (s/veh)	3.9		0.1			24.0				140.9						
Approach LOS								С				F				

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other PHF Jurisdiction ACHD Time Period PM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Deer Flat File Name LocustSignals-PM-2025Total.xus Intersection **Project Description** 2025 PM Peak Total WB **Demand Information** EB NB SB Approach Movement L R L R R L R 604 13 Demand (v), veh/h 76 132 3 3 0 38 3 17 110 224 110 **Signal Information** Ж Cycle, s 130.0 Reference Phase 6 542 Offset, s 0 Reference Point End 4.0 4.0 22.3 0.0 Green 4.0 65.7 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 5.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 4.0 1.2 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 81.7 10.0 81.7 0.0 28.3 10.0 38.3 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 0.0 3.2 3.1 3.2 Queue Clearance Time (g_s), s 2.0 2.1 4.8 3.1 31.4 Green Extension Time (g_e), s 0.6 0.0 0.0 0.0 0.0 0.9 0.0 0.9 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 0.01 1.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 45 Adjusted Flow Rate (v), veh/h 150 266 3 671 0 18 363 1674 1751 1674 1751 1674 1735 1674 1569 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 7.2 0.1 33.7 0.0 2.8 1.1 29.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.0 7.2 0.1 33.7 0.0 2.8 1.1 29.4 0.22 Green Ratio (g/C) 0.52 0.58 0.55 0.58 0.13 0.17 0.25 Capacity (c), veh/h 341 1019 604 1020 64 297 309 390 Volume-to-Capacity Ratio (X) 0.439 0.261 0.005 0.658 0.000 0.150 0.060 0.932 Back of Queue (Q), ft/ln (95 th percentile) 156.3 119.9 2 513.7 0 56.9 21.7 447.4 Back of Queue (Q), veh/ln (95 th percentile) 6.1 4.7 0.1 20.1 0.0 2.2 8.0 17.5 Queue Storage Ratio (RQ) (95 th percentile) 1.56 0.00 0.02 0.00 0.00 0.00 0.07 0.00 45.8 Uniform Delay (d 1), s/veh 33.8 9.2 13.4 18.4 0.0 40.3 47.8 Incremental Delay (d 2), s/veh 0.2 0.4 0.0 3.3 0.0 0.1 0.0 4.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 33.9 9.6 13.4 21.7 0.0 45.9 40.3 52.2 Level of Service (LOS) С Α В С D D D 18.3 В 21.7 С 45.9 Approach Delay, s/veh / LOS D 51.6 D Intersection Delay, s/veh / LOS 29.0 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.89 В 1.96 В 1.95 1.94 В В Bicycle LOS Score / LOS 0.87 Α 1.60 0.56 Α 1.12 Α

HCS7 Two-Way Stop-Control Report										
General Information										
Analyst	RAB	Intersection	Locust Grove and E Access							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	03/31/2020	East/West Street	E Access							
Analysis Year	2025	North/South Street	Locust Grove							
Time Analyzed	AM Peak Hour Total	Peak Hour Factor	0.92							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Ledgestone South									

Vehicle Volumes and Adj	justme	nts															
Approach		Eastb	oound			Westl	bound			North	Northbound			Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0	
Configuration			LR							LT						TR	
Volume (veh/h)		108		12						4	132				75	36	
Percent Heavy Vehicles (%)		3		3						3							
Proportion Time Blocked																	
Percent Grade (%)			0														
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.43		6.23						4.13							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.53		3.33						2.23							
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)			130							4							
Capacity, c (veh/h)			748							1461							
v/c Ratio			0.17							0.00							
95% Queue Length, Q ₉₅ (veh)			0.6							0.0							
Control Delay (s/veh)			10.8							7.5							
Level of Service (LOS)			В							А							
Approach Delay (s/veh)		10	0.8							0	.2						
Approach LOS			В														

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RAB	Intersection	Locust Grove and E Access							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	03/31/2020	East/West Street	E Access							
Analysis Year	2025	North/South Street	Locust Grove							
Time Analyzed	PM Peak Hour Total	Peak Hour Factor	0.92							
Intersection Orientation	North-South Analysis Time Period (hrs) 0.25									
Project Description Ledgestone South										

Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastb	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		71		8						14	71				343	121
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Т	7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т		86							15						
Capacity, c (veh/h)			500							1055						
v/c Ratio			0.17							0.01						
95% Queue Length, Q ₉₅ (veh)			0.6							0.0						
Control Delay (s/veh)			13.7							8.5						
Level of Service (LOS)			В							А						
Approach Delay (s/veh)		13	3.7							1	.5					
Approach LOS			В													

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RAB	Intersection	Locust Grove and Hubbard							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	03/31/2020	East/West Street	Hubbard Rd							
Analysis Year	2025	North/South Street	Locust Grove Rd							
Time Analyzed	2025 AM Peak Hour Total	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description Ledgestone South										

Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		448	542	125		8	285	62		0	213	27		3	65	21
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										(0)	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Hea	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		487				9					261				97	
Capacity, c (veh/h)		1176				873										
v/c Ratio		0.41				0.01										
95% Queue Length, Q ₉₅ (veh)		2.1				0.0										
Control Delay (s/veh)		10.2				9.2										
Level of Service (LOS)		В				Α										
Approach Delay (s/veh)	8.4					0	.3									
Approach LOS																

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other Jurisdiction ACHD Time Period AM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Hubbard File Name LocustSignals-AM-2025Total.xus Intersection **Project Description** 2025 AM Peak Total WB **Demand Information** EB NB SB Approach Movement R L R R R 542 62 Demand (v), veh/h 448 125 8 285 0 213 27 3 65 21 **Signal Information** Ж Ji. Cycle, s 90.0 Reference Phase 6 517 Offset, s 45 Reference Point End 15.7 Green 11.5 25.1 0.0 4.0 3.6 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 5.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.2 4.0 1.3 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 17.5 48.6 10.0 41.1 0.0 21.7 9.6 31.4 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 0.0 3.1 3.1 3.1 Queue Clearance Time (g_s), s 11.2 2.0 15.3 2.1 5.8 Green Extension Time (g_e), s 0.3 0.0 0.2 0.0 0.0 0.5 0.0 0.6 Phase Call Probability 1.00 1.00 1.00 0.91 1.00 0.04 0.02 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 260 388 5 216 0 261 3 93 1674 1699 1674 1703 1674 1722 1674 1684 Adjusted Saturation Flow Rate (s), veh/h/ln 9.2 15.7 0.0 9.0 0.0 13.3 0.1 3.8 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 9.2 15.7 0.0 9.0 0.0 13.3 0.1 3.8 0.39 Green Ratio (g/C) 0.43 0.47 0.30 0.11 0.17 0.24 0.28 Capacity (c), veh/h 501 805 408 665 307 301 178 474 Volume-to-Capacity Ratio (X) 0.520 0.482 0.012 0.324 0.000 0.868 0.018 0.197 Back of Queue (Q), ft/ln (95 th percentile) 170.9 261.7 3.4 178.7 0 243.9 2.4 68.2 Back of Queue (Q), veh/ln (95 th percentile) 6.7 10.2 0.1 7.0 0.0 9.5 0.1 2.7 Queue Storage Ratio (RQ) (95 th percentile) 1.71 0.00 0.03 0.00 0.00 0.00 0.01 0.00 Uniform Delay (d 1), s/veh 20.2 19.8 22.3 23.1 0.0 36.1 27.5 24.6 Incremental Delay (d 2), s/veh 0.2 1.5 0.0 1.2 0.0 3.0 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 20.4 21.3 22.3 24.3 0.0 39.1 27.5 24.7 Level of Service (LOS) С С С С D С С 21.0 C 24.3 С 39.1 24.8 С Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 25.7 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.95 В В 1.93 1.92 1.91 В В Bicycle LOS Score / LOS 2.49 В 1.12 Α 0.92 Α 0.65 Α

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust Grove and Hubbard										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	03/31/2020	East/West Street	Hubbard Rd										
Analysis Year	2025	North/South Street	Locust Grove Rd										
Time Analyzed	2025 PM Peak Hour Total	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		70	289	125		277	357	0		7	109	26		0	312	37
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)									()			(0		
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		76				301					154				379	
Capacity, c (veh/h)		1165				1105										
v/c Ratio		0.07				0.27										
95% Queue Length, Q ₉₅ (veh)		0.2				1.1										
Control Delay (s/veh)		8.3				9.5										
Level of Service (LOS)		А				А										
Approach Delay (s/veh)	1.8				6	.0										
Approach LOS																

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency WHPacific Duration, h 0.25 Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other PHF Jurisdiction ACHD Time Period PM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Hubbard File Name LocustSignals-PM-2025Total.xus Intersection **Project Description** 2025 PM Peak Total WB **Demand Information** EB NB SB Approach Movement R L R R R Demand (v), veh/h 70 289 125 277 357 0 109 26 0 312 37 **Signal Information** JI. Cycle, s 130.0 Reference Phase 6 242 Offset, s 0 Reference Point End Green 6.0 30.7 0.0 7.1 55.3 1.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 0.0 5.0 5.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 12.0 61.3 25.1 74.4 7.0 43.7 0.0 36.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 0.0 3.1 Queue Clearance Time (g_s), s 6.0 18.5 2.4 10.7 30.0 Green Extension Time (g_e), s 0.1 0.0 0.6 0.0 0.0 8.0 0.0 0.7 Phase Call Probability 0.97 1.00 0.24 1.00 1.00 0.00 0.01 0.01 0.00 Max Out Probability 0.00 **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R Т L R **Assigned Movement** 5 2 12 16 3 8 18 7 4 14 1 6 Adjusted Flow Rate (v), veh/h 94 554 393 0 8 147 0 379 1674 1664 1674 1674 1698 1674 1725 Adjusted Saturation Flow Rate (s), veh/h/ln 0 4.0 32.7 0.0 0.4 8.7 0.0 28.0 Queue Service Time (g_s), s 16.5 Cycle Queue Clearance Time (q c), s 4.0 32.7 16.5 0.0 0.4 8.7 0.0 28.0 0.47 0.29 Green Ratio (g/C) 0.43 0.59 0.26 0.19 0.24 492 Capacity (c), veh/h 400 707 449 89 312 407 Volume-to-Capacity Ratio (X) 0.234 0.784 0.877 0.000 0.086 0.298 0.000 0.931 Back of Queue (Q), ft/ln (95 th percentile) 76.7 405.7 261.2 8.5 167.6 0 464.4 0 Back of Queue (Q), veh/ln (95 th percentile) 3.0 15.8 10.2 0.0 0.3 6.5 0.0 18.1 Queue Storage Ratio (RQ) (95 th percentile) 0.77 0.00 2.61 0.00 0.03 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 21.2 21.4 22.9 39.3 35.9 0.0 48.6 Incremental Delay (d 2), s/veh 0.1 5.3 6.4 0.0 0.2 0.1 0.0 4.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 21.3 26.7 29.3 39.5 36.0 0.0 52.8 Level of Service (LOS) С С С D D D 25.9 С 27.1 С 36.2 52.8 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 32.1 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.92 В В 1.94 1.91 1.94 В В Bicycle LOS Score / LOS 1.36 Α 1.62 0.74 Α 1.11 Α

	HCS7 Two-Way Stop-Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Hubbard and Stroebel									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	03/31/2020	East/West Street	Hubbard									
Analysis Year	2025	North/South Street	Stroebel									
Time Analyzed	AM Peak Hour Total	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Ledgestone South											

Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastl	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		1	0	1		0	0	0
Configuration				TR		LT				L		R				
Volume (veh/h)			1091	32		8	94			96		24				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%)	0															
Right Turn Channelized										N	lo					
Median Type Storage	Undivided															
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Τ					9				104		26				
Capacity, c (veh/h)						568				169		223				
v/c Ratio						0.02				0.62		0.12				
95% Queue Length, Q ₉₅ (veh)						0.0				3.4		0.4				
Control Delay (s/veh)						11.4				55.9		23.2				
Level of Service (LOS)						В				F		С				
Approach Delay (s/veh)	1.1							49	9.3							
Approach LOS		E														

	HCS7 Two-Way Stop-Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Hubbard and Stroebel									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	03/31/2020	East/West Street	Hubbard									
Analysis Year	2025	North/South Street	Stroebel									
Time Analyzed	PM Peak Hour Total	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Ledgestone South											

Vehicle Volumes and Ad	justme	nts																	
Approach		Eastb	ound			Westl	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		1	0	1		0	0	0			
Configuration				TR		LT				L		R							
Volume (veh/h)			468	107		27	106			63		16							
Percent Heavy Vehicles (%)						3				3		3							
Proportion Time Blocked																			
Percent Grade (%)		0)									
Right Turn Channelized										N	lo								
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)	T					4.1				7.1		6.2							
Critical Headway (sec)						4.13				6.43		6.23							
Base Follow-Up Headway (sec)						2.2				3.5		3.3							
Follow-Up Headway (sec)						2.23				3.53		3.33							
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)	T					29				68		17							
Capacity, c (veh/h)						952				370		521							
v/c Ratio						0.03				0.19		0.03							
95% Queue Length, Q ₉₅ (veh)						0.1				0.7		0.1							
Control Delay (s/veh)						8.9				16.9		12.1							
Level of Service (LOS)						Α				С		В							
Approach Delay (s/veh)						2	.0			16	5.0								
Approach LOS										(

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Columbia								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	03/31/2020	East/West Street	Columbia Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.92								
Time Analyzed	2025 AM Peak Hour Total										
Project Description	Ledgestone South										

Vehicle Volume and Adjust	ments													
Approach		Eastbound		,	Westbound	t	ı	Northboun	d	9	Southboun	d		
Movement	L	Т	R	L	T	R	L	Т	R	L	Т	R		
Volume	146	506	10	10	170	36	14	235	14	61	86	54		
% Thrus in Shared Lane														
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3		
Configuration	LTR			LTR			LTR			LTR				
Flow Rate, v (veh/h)	720			235			286			218				
Percent Heavy Vehicles	3			3			3			3				
Departure Headway and Se	rvice Ti	me												
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20				
Initial Degree of Utilization, x	0.640			0.209			0.254			0.194				
Final Departure Headway, hd (s)	6.45			7.03			7.15			7.30				
Final Degree of Utilization, x	1.289			0.459			0.568			0.443				
Move-Up Time, m (s)	2.0			2.0			2.0			2.0				
Service Time, ts (s)	4.45			5.03			5.15			5.30				
Capacity, Delay and Level o	f Servic	е												
Flow Rate, v (veh/h)	720			235			286			218				
Capacity	558			512			503			493				
95% Queue Length, Q ₉₅ (veh)	29.4			2.4			3.5			2.2				
Control Delay (s/veh)	163.9			15.9			19.1			16.0				
Level of Service, LOS	F			С			С			С				
Approach Delay (s/veh)		163.9			15.9			19.1		16.0				
Approach LOS	F C							С	_	С				
Intersection Delay, s/veh LOS			89	9.5						F				

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Columbia File Name LocustSignals-AM-2025Total.xus Intersection **Project Description** 2025 AM Peak Total WB **Demand Information** EB NB SB Approach Movement L R L R R R 36 Demand (v), veh/h 146 506 10 10 170 14 235 24 61 86 54 **Signal Information** 21/2 Cycle, s 90.0 Reference Phase 6 542 Offset, s 0 Reference Point End 17.0 0.0 Green 4.0 31.0 4.0 4.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 5.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.3 4.0 1.2 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 47.0 10.0 47.0 10.0 23.0 10.0 23.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 2.0 2.3 2.6 16.2 4.8 9.4 Green Extension Time (g_e), s 1.5 0.0 0.0 0.0 0.0 8.0 0.0 8.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 160 567 9 191 15 282 66 152 1674 1752 1674 1704 1674 1729 1674 1644 Adjusted Saturation Flow Rate (s), veh/h/ln 0.0 23.9 0.3 2.6 0.6 14.2 2.8 7.4 Queue Service Time (g_s), s 2.6 Cycle Queue Clearance Time (q c), s 0.0 23.9 0.3 0.6 14.2 2.8 7.4 Green Ratio (g/C) 0.37 0.46 0.41 0.46 0.23 0.19 0.23 0.19 Capacity (c), veh/h 536 798 221 777 271 326 176 310 Volume-to-Capacity Ratio (X) 0.299 0.710 0.042 0.246 0.056 0.863 0.377 0.491 Back of Queue (Q), ft/ln (95 th percentile) 95.2 336.8 4.8 44.1 11.5 257.2 52 134.6 Back of Queue (Q), veh/ln (95 th percentile) 3.7 13.2 0.2 1.7 0.4 10.0 2.0 5.3 Queue Storage Ratio (RQ) (95 th percentile) 0.95 0.00 0.05 0.00 0.04 0.00 0.17 0.00 Uniform Delay (d 1), s/veh 18.8 20.7 18.5 5.4 27.1 35.4 28.9 32.6 Incremental Delay (d 2), s/veh 0.1 2.4 0.0 0.7 0.0 2.7 0.5 0.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 18.8 23.1 18.5 6.1 27.1 38.1 29.4 33.1 Level of Service (LOS) В С В Α С D С С 22.2 С 6.7 37.5 32.0 С Approach Delay, s/veh / LOS Α D Intersection Delay, s/veh / LOS 24.7 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.90 В 1.95 В 1.93 1.93 В В

Bicycle LOS Score / LOS

Α

0.98

Α

1.67

В

Α

0.85

	HCS7 All-Way Stop Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust_Columbia									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	03/31/2020	East/West Street	Columbia Rd									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.92									
Time Analyzed	2025 PM Peak Hour Total											
Project Description	Ledgestone South											

Vehicle Volume and Adjust	tments												
Approach		Eastbound	ļ		Westbound	ł	1	Northboun	d	9	Southboun	d	
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Volume	36	223	10	24	622	46	7	100	20	54	304	231	
% Thrus in Shared Lane													
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	
Configuration	LTR			LTR			LTR			LTR			
Flow Rate, v (veh/h)	292			752			138			640			
Percent Heavy Vehicles	3			3			3			3			
Departure Headway and S	ervice Ti	me											
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.260			0.669			0.123			0.569			
Final Departure Headway, hd (s)	7.89			7.25			8.60			7.07			
Final Degree of Utilization, x	0.641			1.515			0.330			1.257			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	5.89			5.25			6.60			5.07			
Capacity, Delay and Level	of Servic	е											
Flow Rate, v (veh/h)	292			752			138			640			
Capacity	456			497			419			509			
95% Queue Length, Q ₉₅ (veh)	4.4			39.2			1.4			25.7			
Control Delay (s/veh)	23.9			261.5			15.8			153.4			
Level of Service, LOS	С			F			С			F			
Approach Delay (s/veh)		23.9			261.5			15.8					
Approach LOS		С			F			С		F			
Intersection Delay, s/veh LOS			16	6.8						F			

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other PHF Jurisdiction ACHD Time Period PM Peak 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Columbia File Name LocustSignals-PM-2025Total.xus Intersection **Project Description** 2025 PM Peak Total WB **Demand Information** EB NB SB Approach Movement R L R R L R 223 46 304 Demand (v), veh/h 36 10 24 622 7 100 20 54 231 **Signal Information** Ж وذلك Cycle, s 130.0 Reference Phase 6 Offset, s 0 Reference Point End Green 6.0 37.4 0.9 47.7 4.0 4.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 5.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.2 4.0 1.3 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 12.0 55.4 10.0 53.4 10.0 53.7 10.9 54.6 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.2 3.1 3.2 Queue Clearance Time (g_s), s 6.9 2.0 2.4 8.8 4.8 47.1 Green Extension Time (g_e), s 0.0 0.0 0.3 0.0 0.0 1.6 0.1 1.5 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.00 0.00 0.00 Max Out Probability 1.00 **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 92 593 19 535 8 130 59 582 1674 1744 1674 1736 1674 1706 1674 1631 Adjusted Saturation Flow Rate (s), veh/h/ln 4.9 39.7 0.0 27.4 0.4 6.8 2.8 Queue Service Time (g_s), s 45.1 Cycle Queue Clearance Time (q c), s 4.9 39.7 0.0 27.4 0.4 6.8 2.8 45.1 0.36 Green Ratio (g/C) 0.35 0.38 0.30 0.40 0.37 0.40 0.37 Capacity (c), veh/h 199 662 155 633 117 626 512 610 Volume-to-Capacity Ratio (X) 0.461 0.896 0.124 0.846 0.065 0.208 0.115 0.953 Back of Queue (Q), ft/ln (95 th percentile) 93 578.6 27.3 266.5 6.7 128.9 51.7 653.7 Back of Queue (Q), veh/ln (95 th percentile) 3.6 22.6 1.1 10.4 0.3 5.0 2.0 25.5 Queue Storage Ratio (RQ) (95 th percentile) 0.93 0.00 0.27 0.00 0.02 0.00 0.17 0.00 Uniform Delay (d 1), s/veh 33.2 28.8 55.4 13.7 31.9 28.2 24.0 39.6 Incremental Delay (d 2), s/veh 0.4 13.1 0.1 10.8 0.1 0.1 0.0 5.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 33.6 41.9 55.5 24.5 32.0 28.2 24.1 44.8 Level of Service (LOS) С D Ε С С С С D 40.8 25.6 С 28.5 С 42.9 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 36.4 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.96 В 1.93 В 1.93 1.93 В В Bicycle LOS Score / LOS 0.97 Α 1.73 0.72 Α 1.54

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other Jurisdiction ACHD Time Period AM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Lake Hazel File Name LocustSignals-AM-2025Total.xus Intersection **Project Description** 2025 AM Peak Total WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 93 141 Demand (v), veh/h 29 499 5 14 319 10 443 37 133 24 **Signal Information** Ж وذلك Cycle, s 90.0 Reference Phase 6 542 Offset, s 16 Reference Point End Green 4.0 20.2 26.8 4.0 4.0 1.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 5.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.2 3.0 1.3 3.0 1.1 3.0 1.1 3.0 Phase Duration, s 10.0 36.2 10.0 36.2 10.0 32.8 11.0 33.8 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 3.2 2.0 2.4 25.8 7.0 7.9 Green Extension Time (g_e), s 0.0 0.0 0.2 0.0 0.0 1.0 0.0 1.2 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 0.99 0.29 0.44 0.00 0.00 1.00 0.01 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 32 542 5 8 173 50 11 482 40 145 153 26 1674 1758 1514 1674 1758 1490 1674 1758 1523 1674 1758 1525 Adjusted Saturation Flow Rate (s), veh/h/ln 1.2 26.7 0.2 0.0 7.3 2.0 0.4 23.8 1.7 5.0 5.9 1.1 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 1.2 26.7 0.2 0.0 7.3 2.0 0.4 23.8 1.7 5.0 5.9 1.1 0.29 0.34 0.34 0.25 0.34 0.30 0.30 0.31 Green Ratio (g/C) 0.34 0.34 0.35 0.31 589 524 543 Capacity (c), veh/h 326 508 168 589 499 425 454 203 472 Volume-to-Capacity Ratio (X) 0.097 0.920 0.011 0.045 0.294 0.101 0.026 0.919 0.089 0.712 0.282 0.055 Back of Queue (Q), ft/ln (95 th percentile) 21.8 521.4 3.6 7.1 149.7 34.1 6.7 388.7 27 119.6 110.2 17 Back of Queue (Q), veh/ln (95 th percentile) 0.9 20.4 0.1 0.3 5.8 1.3 0.3 15.2 1.1 4.7 4.3 0.7 Queue Storage Ratio (RQ) (95 th percentile) 0.22 0.00 0.00 0.07 0.00 0.14 0.02 0.00 0.00 0.40 0.00 0.00 Uniform Delay (d 1), s/veh 23.6 28.8 16.3 39.2 25.7 20.0 19.8 30.5 26.4 25.8 23.5 21.8 Incremental Delay (d 2), s/veh 0.0 21.9 0.0 0.0 1.2 0.4 0.0 2.9 0.0 9.6 0.1 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 23.6 50.6 16.3 39.2 27.0 20.4 19.9 33.4 26.4 35.4 23.6 21.9 Level of Service (LOS) С D В D С С В С С D С С 48.8 D 25.9 С 32.6 С 28.7 С Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 36.6 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.14 В 2.11 В 2.11 2.11 В В Bicycle LOS Score / LOS 1.44 Α 1.25 Α 1.37 Α 1.02

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date Apr 3, 2020 Area Type Other Jurisdiction ACHD Time Period PM Peak PHF 0.92 **Urban Street** LocustGrove Rd Analysis Year 2025 **Analysis Period** 1> 7:00 Locust and Lake Hazel File Name LocustSignals-PM-2025Total.xus Intersection **Project Description** 2025 PM Peak Total **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 505 122 Demand (v), veh/h 13 354 5 23 20 281 31 245 654 71 JI. **Signal Information** Ж Cycle, s 140.0 Reference Phase 6 512 Offset, s 20 Reference Point End 48.8 46.7 0.0 Green 4.0 4.0 6.5 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 5.0 0.0 Force Mode Float Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 Phase Duration, s 10.0 54.8 10.0 54.8 10.0 52.7 22.5 65.2 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 2.7 3.4 3.2 21.6 16.1 56.9 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.0 2.4 0.3 2.3 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.02 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 14 385 5 27 588 142 22 305 34 266 711 77 Adjusted Saturation Flow Rate (s), veh/h/ln 1674 1758 1514 1674 1758 1490 1674 1758 1523 1674 1758 1525 0.7 25.6 0.3 1.4 45.4 1.2 19.6 2.1 54.9 Queue Service Time (g_s), s 12.1 14.1 4.3 Cycle Queue Clearance Time (q c), s 0.7 25.6 0.3 1.4 45.4 12.1 1.2 19.6 2.1 14.1 54.9 4.3 0.35 0.35 0.35 Green Ratio (g/C) 0.38 0.38 0.35 0.36 0.33 0.33 0.47 0.42 0.42 Capacity (c), veh/h 119 613 528 249 613 519 112 587 508 455 743 645 Volume-to-Capacity Ratio (X) 0.118 0.628 0.010 0.107 0.960 0.274 0.195 0.521 0.066 0.585 0.956 0.120 Back of Queue (Q), ft/ln (95 th percentile) 14.1 445.5 5.7 27.3 646.1 184.1 22.4 339 35.4 244.1 875.4 70.9 Back of Queue (Q), veh/ln (95 th percentile) 0.6 17.4 0.2 1.1 25.2 7.2 0.9 13.2 1.4 9.5 34.2 2.8 Queue Storage Ratio (RQ) (95 th percentile) 0.14 0.00 0.00 0.27 0.00 0.74 0.07 0.00 0.00 0.81 0.00 0.00 Uniform Delay (d 1), s/veh 34.9 38.0 29.8 31.2 37.4 45.0 36.1 37.6 31.8 26.0 39.1 24.6 Incremental Delay (d 2), s/veh 0.2 4.8 0.0 0.0 15.2 0.5 0.3 0.3 0.0 0.4 13.5 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 35.0 42.9 29.8 31.3 52.6 45.5 36.4 37.9 31.8 26.4 52.7 24.6 Level of Service (LOS) D D С С D D D D С С D С 42.4 D 50.5 D 37.2 D 44.0 Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 44.7 D **Multimodal Results** ΕB WB NB

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.12

В

2.13

1.08

В

Α

2.12

1.15

В

Α

2.11

2.23

В

HCS7 Signalized Intersection Results Summary 14144141 **General Information Intersection Information** WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other AM Peak PHF Jurisdiction ACHD Time Period 0.92 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 7:00 Meridian and Hubbard File Name Meridian&Hubbard-AM-2025Total.xus Intersection ጎ ተ ተ ሶ **Project Description** 2025 AM Peak Total WB **Demand Information** EB NB SB Approach Movement R L R L R L R 37 14 Demand (v), veh/h 214 22 34 10 146 12 1136 62 421 55 **Signal Information** 111 وذلك Cycle, s 150.0 Reference Phase 2 542 Offset, s 0 Reference Point End 6.2 43.9 1.7 Green 4.4 4.0 59.9 Uncoordinated No Simult. Gap E/W On Yellow 5.0 5.0 5.0 5.0 0.0 5.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 3.0 1.1 3.0 Phase Duration, s 22.5 62.1 10.4 49.9 10.0 65.9 11.7 67.6 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g_s), s 16.1 4.3 2.7 54.7 5.5 16.0 Green Extension Time (g_e), s 0.4 0.0 0.1 0.0 0.0 5.2 0.1 5.2 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 233 64 37 170 13 1235 15 67 458 60 1674 1645 1674 1504 1674 1674 1524 1674 1674 1525 Adjusted Saturation Flow Rate (s), veh/h/ln 3.8 2.3 13.5 0.7 52.7 0.9 3.5 3.6 Queue Service Time (g_s), s 14.1 14.0 2.3 Cycle Queue Clearance Time (q c), s 14.1 3.8 13.5 0.7 52.7 0.9 3.5 14.0 3.6 0.29 0.44 Green Ratio (g/C) 0.42 0.37 0.32 0.43 0.40 0.40 0.41 0.41 Capacity (c), veh/h 478 615 485 440 374 1337 608 133 1374 626 Volume-to-Capacity Ratio (X) 0.487 0.104 0.076 0.385 0.035 0.924 0.025 0.508 0.333 0.095 Back of Queue (Q), ft/In (95 th percentile) 248.3 73.4 43.9 234.1 12.6 750.5 15.2 67.5 246.1 60.2 Back of Queue (Q), veh/ln (95 th percentile) 9.7 2.9 1.7 9.1 0.5 29.3 0.6 2.6 9.6 2.4 Queue Storage Ratio (RQ) (95 th percentile) 2.48 0.00 0.44 0.00 0.04 0.00 0.00 0.23 0.00 0.00 30.6 42.9 Uniform Delay (d 1), s/veh 30.7 35.3 42.3 25.6 27.3 35.6 30.2 27.1 Incremental Delay (d 2), s/veh 0.3 0.3 0.0 2.5 0.0 1.3 0.0 1.1 0.1 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 30.9 30.9 35.3 44.8 25.6 44.2 27.3 36.7 30.3 27.2 Level of Service (LOS) С С D D С D С D С С 30.9 C 43.1 43.8 D 30.7 С Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 38.8 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.45 В 2.46 В 1.93 1.93 В В

Bicycle LOS Score / LOS

Α

1.53

В

0.98

Α

Α

0.97

HCS7 Signalized Intersection Results Summary 14144141 **General Information Intersection Information** WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other PHF Jurisdiction ACHD Time Period PM Peak 0.92 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 5:00 Meridian and Hubbard File Name Meridian&Hubbard-PM-2025Total.xus Intersection ጎ ተ ተ ሶ **Project Description** 2025 PM Peak Total **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 17 Demand (v), veh/h 111 45 28 15 126 38 631 37 168 1361 355 **Signal Information** 111 وذلك Cycle, s 150.0 Reference Phase 2 542 Offset, s 0 Reference Point Begin 5.9 71.8 Green 4.0 39.3 4.0 1.0 Uncoordinated No Simult. Gap E/W On Yellow 5.0 0.0 5.0 5.0 0.0 5.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 0.0 1.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 1 7 4 Case Number 1.1 4.0 1.1 4.0 1.1 3.0 1.1 3.0 Phase Duration, s 15.9 51.2 10.0 45.3 10.0 77.8 11.0 78.8 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 9.7 4.0 3.9 22.2 7.0 63.2 Green Extension Time (g_e), s 0.2 0.0 0.0 0.0 0.1 9.7 0.0 9.6 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.01 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 121 67 30 153 41 686 40 183 1479 386 Adjusted Saturation Flow Rate (s), veh/h/ln 1674 1549 1674 1514 1674 1674 1524 1674 1674 1525 7.7 4.8 2.0 12.5 1.9 20.2 2.1 5.0 26.2 Queue Service Time (g_s), s 61.2 2.1 Cycle Queue Clearance Time (q c), s 7.7 4.8 2.0 12.5 1.9 20.2 5.0 61.2 26.2 0.30 0.26 Green Ratio (g/C) 0.34 0.29 0.51 0.48 0.48 0.51 0.49 0.49 Capacity (c), veh/h 380 467 434 397 115 1602 729 360 1624 740 Volume-to-Capacity Ratio (X) 0.317 0.144 0.070 0.386 0.360 0.428 0.055 0.507 0.911 0.521 Back of Queue (Q), ft/ln (95 th percentile) 146.6 88.2 37.9 222.7 35.1 325 34.7 130.9 846.4 364.2 Back of Queue (Q), veh/ln (95 th percentile) 5.7 3.4 1.5 8.7 1.4 12.7 1.4 5.1 33.1 14.6 Queue Storage Ratio (RQ) (95 th percentile) 1.47 0.00 0.38 0.00 0.12 0.00 0.00 0.44 0.00 0.00 25.7 Uniform Delay (d 1), s/veh 35.9 38.3 38.6 45.4 33.5 20.9 28.5 35.6 26.6 Incremental Delay (d 2), s/veh 0.2 0.6 0.0 2.8 0.7 0.1 0.0 0.5 2.5 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 36.0 38.9 38.6 48.2 34.2 25.7 21.0 28.9 38.1 26.8 Level of Service (LOS) D D D D С С С С D С 37.1 46.6 25.9 С 35.2 Approach Delay, s/veh / LOS D D D Intersection Delay, s/veh / LOS 33.7 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.45 В 2.46 В 1.92 1.92 В В

Bicycle LOS Score / LOS

Α

1.12

Α

0.80

Α

2.18

		IK	A	ic Si	GIVA	L VV	4RR/	ANTS	>				
City	//Town: Kuna,	own: Kuna, ID Analysis Performed					formed	By:	RB				
_	County: ADA Co	ounty			-	nalysis l		· -		4/9	9/2020		
	Division:			•		mber if <i>i</i>							
	a Date:												
-		Deer Flat Appr. Lanes: 1				C	ritical A _l	pproach	Speed	(mph):	50		
Minor	nor Route: Locust Grove Appr. Lanes: 1							i:					
1. 2.	/olume Level Criteria 1. Is the critical speed of major street traffic > 70 km/h (40 mph)? 2. Is the intersection in a built-up area or isolated community of <10,000 population? If Question 1 or 2 above is answered "Yes", then use "70%" volume level X 70% 100%												
Wai	RANT 1 - EIGHT-H rrant 1 is satisfied if Condition rrant is also satisfied if both C	n A or Coi	ndition E	is "100%	%" satisfi	ed.		an.	Satisf	ied:	Ye	s X	No
ade	equate trials of other remedial equate trial(s) of other re <u>List Remedial Me</u>	measure emedial	s have b measu	een tried res trie	d. d:				<u>B)</u>		Ye	s X	No
	Condition A - Minimum Vehicular Volume & Condition B - Interruption of Continuous Traffic 100% Satisfied: Yes X No (Used if neither Condition A or B is satisfied) 80% Satisfied: Yes X No												
		(Used if	neithe	r Condi							Ш. —.		<u>1</u> -
ĺ		(Used if	neithe	r Condi				d) 80%	Satisfie		Ye		<u>1</u> -
	(volumes in veh/hr)			equiren	tion A d	or B is s	satisfie	d) 80% Eig	Satisfie	ed: nest Ho	Ye:	s X	No
	(volumes in veh/hr) Approach Lanes	Minir	num R	equiren 2 or	nents	or B is s	satisfie	d) 80% Eig	Satisfie	ed: nest Ho	Ye:	s X	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches	Minir	num R	equiren	nents			d) 80%	Satisfie	ed:	Ye		<u>1</u> -
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir	mum R 1 70%	equiren 2 or 100%	nents more	or B is s	satisfied on	Eig	Satisfie	nest Ho	urs Yes	x X	No No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minir 100% 500 150	num R 1 70% 350 105	equiren 2 or 100% 600 200 equiren	nents more 70% 420 140	375	satisfied when the satisfied with the satisfied wit	Eig 2M 463	Satisfie tht High	rest Ho	Yes	X X 493	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150	mum R 1 70% 350 105	equiren 2 or 100% 600 200 equiren 2 or	nents more 70% 420 140 nents more	375	satisfied when the satisfied with the satisfied wit	Eig 2M 463	Satisfie tht High	rest Ho	Yes	X X 493	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level	Minir 100% 500 150	mum R 1 70% 350 105	equiren 2 or 100% 600 200 equiren	nents more 70% 420 140 nents more	375	satisfied when the satisfied with the satisfied wit	Eig 2M 463	Satisfie tht High	rest Ho	Yes	X X 493	No No 331
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street	Minir 100% 500 150	mum R 1 70% 350 105	equiren 2 or 100% 600 200 equiren 2 or	nents more 70% 420 140 nents more	375	satisfied when the satisfied with the satisfied wit	Eig 2M 463	Satisfie tht High	rest Ho	Yes	X X 493	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500 150 Minir 100%	mum R 1 70% 350 105 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100%	nents more 70% 420 140 nents more 70%	375 158	satisfied A 331 140	463	Satisfic int High states of the states of the states of th	rest Ho	721 304	493 208	331 140
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minir 100% 500 150 Minir 750	mum R 1 70% 350 105 mum R 1 70% 525	equiren 2 or 100% 600 200 equiren 2 or 100% 900	nents more 70% 420 140 nents more 70% 630	375 375	331 140	463 463	Satisfie ht High Shapes Satisfie Satisf	780 780	721 304	493 208	331 140
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500 150 Minir 100% 750 75	mum R 1 70% 350 105 mum R 1 70% 525	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren	nents more 70% 420 140 nents more 70% 630	375 375	331 140	463 463	Satisfie ht High Shapes Satisfie Satisf	780 780	721 304	493 208	331 140
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minir 100% 500 150 Minir 100% 750 75	mum R 1 70% 350 105 mum R 1 70% 525 53	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren	nents more 70% 420 140 nents more 70% 630 70 nents more	375 375	331 140	463 463	Satisfie ht High Shapes Satisfie Satisf	780 780	721 304	493 208	331 140
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150 Minir 750 75	mum R 1 70% 350 105 mum R 1 70% 525 53	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or	nents more 70% 420 140 nents more 70% 630 70 nents more	375 375	331 140	463 463	Satisfie ht High Shapes Satisfie Satisf	780 780	721 304	493 208	331 140
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approach Lanes Volume Level Both Approaches	Minir 100% 500 150 Minir 750 75 Minir 100%	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100%	nents more 70% 420 140 nents more 70% 630 70 nents more 70%	375 158 375	331 140 331	463 196	581 245	780 329	721 304	493 208 493 208	331 140 331 140
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500 150 Minir 100% 750 Minir 400 120	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336	375 158 375	331 140 331	463 196 463	581 245 581	780 329 780	721 304 721	493 208 493 493	331 140 331 331
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approach on Minor Street Highest Approach on Major Street Highest Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84 mum R	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160 equiren 2 or	nents more 70% 420 140 140 nents more 70% 630 70 nents more 70% 336 112 nents more	375 158 375	331 140 331	463 196 463	581 245 581	780 329 780	721 304 721	493 208 493 493	331 140 331 331
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160 equiren	nents more 70% 420 140 140 nents more 70% 630 70 nents more 70% 336 112 nents more	375 158 375	331 140 331	463 196 463	581 245 581	780 329 780	721 304 721	493 208 493 493	331 140 331 331
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approach on Minor Street Highest Approach on Major Street Highest Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84 mum R	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160 equiren 2 or	nents more 70% 420 140 140 nents more 70% 630 70 nents more 70% 336 112 nents more	375 158 375	331 140 331	463 196 463	581 245 581	780 329 780	721 304 721	493 208 493 493	331 140 331 331

on Minor Street 00 72 00 130 130 230 307 200 130

TRAFFIC SIGNAL WARRANTS

WARRANT 2 - FOUR-HOUR VEHICULAR VOLUME

Satisfied: No

If all four points lie above the appropriate line, then this warrant is satisfied.

	Fo	ur High	est Ho	urs
	Md	Md	Md	Nd
(Volumes in veh/hr)	€.	4	2'	9
SUM of Both Approaches on Major Street	581	780	721	493
Highest Minor Street Approach	245	329	304	208

Note: 115 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 80 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

60 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

		SNAL WARRANT SUN	
City/Town: County:	Kuna, ID ADA County	Analysis Performed By: Date Analysis Performed:	RB 4/9/2020
Division:	ADA County	Project Number if Applicable:	47.07.2.02.0
Data Date:	2025 Background	Weather Conditions:	
Major Route:	Deer Flat	Appr. Lanes: 1	Critical Approach Speed (mph): 50
Minor Route:	Locust Grove	Appr. Lanes: 1	
1A - Minimum	ght-Hour Vehicular Vol Vehicular Volume: on of Continuous Traffic:	wme 80% Satisfied X Yes No Yes X No	SATISFIED Yes X No 100% Satisfied Yes X No Yes X No
		res Tried and their Outcome.	
	-		
Warrant #2: Fo	our-Hour Vehicular Volu	<u>ıme</u>	X Yes No
Warrant #3: Pe	eak Hour		Yes X No
	The Unusual Case(s) that	Justifies the use of this Warrant	t.
Warrant #4: Pe	edestrian Volume		Yes X No
Warrant #5: Sc	hool Crossing		Yes X No
	G	ted to improve the Safety of the	
	•	•	
Warrant #6: Co	ordinated Signal Syster	<u>n</u>	Yes X No
Warrant #7: Cr	ash Experience		Yes X No
	-	have failed to reduce crashes.	
Warrant #8: Ro	oadway Network		Yes X No
Warrant #9: In	tersection Near a Grade	Crossing	Yes X No
CONCLUSIONS	<u></u>	Warrants Satisfied	l: 2
Remarks:			
Remarks:			

		TR	AFF	IC SI	GINA	L W	4KK/	ANTS	•				
City	ı/Town: Kuna,	Fown: Kuna, ID Analysis Performed						Ву:	RB				
-	County: ADA Co	ounty				nalysis l				4/9	9/2020		
	livision:			•		•							
	a Date:	Project Number if Applicable Weather Conditions											
								<u></u>					
-		Hubbard Appr. Lanes: 1					Cı	ritical A _l	pproach	Speed	(mph):	50	
Minor	nor Route: Locust Grove Appr. Lanes: 1												
1. 2.	/olume Level Criteria 1. Is the critical speed of major street traffic > 70 km/h (40 mph)? 2. Is the intersection in a built-up area or isolated community of <10,000 population? If Question 1 or 2 above is answered "Yes", then use "70%" volume level X Yes No Yes No 100%										<u>!</u>		
WAR	RANT 1 - EIGHT-H	OUR	VEHI	CULA	R VO	LUME			Cotiof	iadı	<u> </u>		
Wai	rrant 1 is satisfied if Conditior rrant is also satisfied if both C quate trials of other remedial	Condition	A and C	ondition i	B are "8		sfied, give	en	Satisf	iea:	Yes	s <u>X</u>	No
Ade	equate trial(s) of other re					% Comb	oination	of A & I	<u>B)</u>		Yes	X	No
			<u>, </u>	<u> </u>									
	Condition A - Minimu	m Vehi	cular \	/olume	& Co	ndition	B - Int	errupt	ion of	Contin	l luous ⁻	Traffic	
	Condition A - Minimum Vehicular Volume & Condition B - Interruption of Continuous Traffic												
		100% Satisfied: Yes X No										s X	No
		(llood if	noitha	v Candi				100%	Satisfic	ed:	Yes		-
		Used if	neithe	r Condi				100%	Satisfic	ed:			No No
[<u> </u>				tion A			100% d) 80%	Satisfic	ed:	Ye:		-
	(volumes in veh/hr)	Minir	num R	equiren	tion A o	or B is s	satisfie	100% d) 80% Eig	Satisfie Satisfie	ed: ed: nest Ho	Yes	s X	No
	(volumes in veh/hr) Approach Lanes	Minir	num R	equirem	nents	or B is s	satisfie	100% d) 80% Eig	Satisfie Satisfie	ed: ed: nest Ho	Yes	s X	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches	Minir	num R	equiren	nents			100% d) 80%	Satisfic	ed: ed:	Ye:		-
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level	Minir	mum Ro 1 70%	equiren 2 or 1	nents more	or B is s	satisfie on	100% d) 80% Eig	Satisfie Sat	ed: ed: nest Ho	Yes	X X	No A
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500	num Ro 1 70% 350 105	equiren 2 or 1 100%	nents more 70% 420	or B is s	on distribution of the second	100% d) 80% Eig	Satisfic Satisfic ht High	ed: ed: nest Ho	Yes	629	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150	mum Ro 1 70% 350 105	equiren 2 or 1 100% 600 200 equiren 2 or 1	nents more 70% 420 140 nents more	or B is s	on distribution of the second	100% d) 80% Eig	Satisfic Satisfic ht High	ed: ed: nest Ho	Yes	629	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level	Minir 100% 500 150	mum Ro 1 70% 350 105	equiren 2 or 1 100% 600 200 equiren	nents more 70% 420 140 nents more	or B is s	on distribution of the second	100% d) 80% Eig	Satisfic Satisfic ht High	ed: ed: nest Ho	Yes	629	No
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street	Minir 100% 500 150	mum Ro 1 70% 350 105	equiren 2 or 1 100% 600 200 equiren 2 or 1	nents more 70% 420 140 nents more	or B is s	on distribution of the second	100% d) 80% Eig	Satisfic Satisfic ht High	ed: ed: nest Ho	Yes	629	No
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500 150 Minir 100%	mum R 1 70% 350 105 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100%	nents more 70% 420 140 nents more 70%	479 109	satisfied All 423 96	100% d) 80% Eig 592 135	Satisfie Satisfie ht High	ed: ed: nest Ho part	Yes Yes Urs 920 210	629 143	423 96
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minir 100% 500 150 Minir 750	mum Ro 1 70% 350 105 mum Ro 1 70% 525	equirem 2 or 1 100% 600 200 equirem 2 or 1 100% 900	nents more 70% 420 140 nents more 70% 630	or B is s	423 96	100% d) 80% Eig 592 135	Satisfic Satisfic ht High 742 169	ed: ed: nest Ho p995 227	Yes Yes Urs 920 210 920	629 143	100 No 10
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minir 100% 500 150 Minir 750 75	mum Ro 1 70% 350 105 mum Ro 525 53	2 or 1 100% 600 200 equirem 2 or 1 100% 900 100 equirem	nents more 70% 420 140 nents more 70% 630 70	or B is s	423 96	100% d) 80% Eig 592 135	Satisfic Satisfic ht High 742 169	ed: ed: nest Ho p995 227	Yes Yes Urs 920 210 920	629 143	100 No 10
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minir 100% 500 150 Minir 750 75	mum Ro 1 70% 350 105 mum Ro 1 70% 525	2 or 1 100% 600 200 equirem 2 or 1 100% 900 100 equirem	nents more 70% 420 140 nents more 70% 630 70 nents more	or B is s	423 96	100% d) 80% Eig 592 135	Satisfie Satisfie Natisfie Nat	ed: ed: nest Ho p995 227	Yes Yes Urs 920 210 920	629 143	423 96 423
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approach Lanes Volume Level Both Approaches	Minir 100% 500 150 Minir 750 75	mum Ro 1 70% 350 105 mum Ro 525 53	2 or 100% 600 200 equirem 900 100 equirem 2 or 100% 200 appears 100% 200 appears 100% 200 appears 100% 200 appears 100% ap	nents more 70% 420 140 nents more 70% 630 70 nents more	or B is s	423 96	100% d) 80% Eig 592 135	Satisfie Satisfie Natisfie Nat	ed: ed: nest Ho p995 227	Yes Yes Urs 920 210 920	629 143	423 96 423
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500 150 Minir 100% 750 75 Minir 100% 400	mum Ro 1 70% 350 105 mum Ro 525 53 mum Ro 1 70%	equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100%	nents more 70% 420 140 nents more 70% 630 70 nents more 70%	109 109	423 96 423 96	100% d) 80% Eig 592 135 592 135	Satisfie Satisfie Natisfie Nat	ed: ed: nest Ho p995 227 995 227	920 210 920 210	629 143	423 96 423
1 W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minir 100% 500 150 Minir 750 75 Minir 400 120	mum Ro 1 70% 350 105 mum Ro 1 70% 525 53 mum Ro 1 70% 280	equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100% 480 160	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336	109 479 109	423 96 423 423	100% d) 80% Eig 592 135	Satisfie Sat	ed: ed: ed: 995 227 995	Yes Yes Yes urs 920 210 920 210	629 143 629	423 96 423 423
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120	mum Ro 1 70% 350 105 mum Ro 1 70% 525 53 mum Ro 1 70% 280 84	equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 100% 480 160 equirem	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112	109 479 109	423 96 423 423	100% d) 80% Eig 592 135 592 135	Satisfie Sat	ed: ed: ed: 995 227 995	920 210 920 210	629 143 629	423 96 423 423
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120	mum Ro 1 70% 350 105 mum Ro 1 70% 525 53 mum Ro 1 70% 280	equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 100% 480 160 equirem	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112 nents more	109 479 109	423 96 423 423	100% d) 80% Eig 592 135 592 135	Satisfie Sat	ed: ed: ed: 995 227 995	920 210 920 210	629 143 629	423 96 423 423
W - 1B W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120	mum Ro 1 70% 350 105 mum Ro 1 70% 525 53 mum Ro 1 70% 280 84 mum Ro	equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 100% 480 160 equirem 2 or 100%	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112 nents more	109 479 109	423 96 423 423	100% d) 80% Eig 592 135 592 135	Satisfie Sat	ed: ed: ed: 995 227 995	920 210 920 210	629 143 629	423 96 423 423

on Minor Street | 00 | 72 | 00 | 00 | 100

TRAFFIC SIGNAL WARRANTS

WARRANT 2 - FOUR-HOUR VEHICULAR VOLUME

Satisfied: X Yes No

If all four points lie above the appropriate line, then this warrant is satisfied.

	Fo	ur High	est Ho	urs
	Md	Md	Md	N
(Volumes in veh/hr)	3,	4	2'	<i>d9</i>
SUM of Both Approaches on Major Street	742	995	920	629
Highest Minor Street Approach	169	227	210	143

* Note: 115 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 80 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

60 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

City/Town:	TRAFFIC SIC	GNAL WARRANT SUI Analysis Performed By:	MMARY RB
County:	ADA County 2025 Background	Date Analysis Performed: Project Number if Applicable: Weather Conditions:	4/9/2020
Major Route: Minor Route:	Hubbard Locust Grove	Appr. Lanes: 1 Appr. Lanes: 1	Critical Approach Speed (mph):
Warrant #1: Ei	ght-Hour Vehicular Vol		SATISFIED Yes X No
	Vehicular Volume: on of Continuous Traffic: <i>Any Remedial Measu</i> r	80% Satisfied X Yes No X Yes No es Tried and their Outcome.	100% Satisfied Yes X No Yes X No
Warrant #2: Fo	our-Hour Vehicular Volu	<u>me</u>	X Yes No
Warrant #3: Pe	eak Hour		Yes X No
	The Unusual Case(s) that s	Justifies the use of this Warran	t.
Warrant #4: Pe	edestrian Volume		Yes X No
Narrant #5: Sc Any Ro	· ·	ted to improve the Safety of the	Yes X No Students.
Warrant #6: Co	oordinated Signal Systen	<u>1</u>	Yes X No
Warrant #7: Cr	ash Experience Other Alternatives that	have failed to reduce crashes.	Yes X No
Varrant #8: Ro	oadway Network		Yes X No
Warrant #9: In	tersection Near a Grade	Crossing	Yes X No
CONCLUSIONS	<u>5</u>	Warrants Satisfied	d: 2
Remarks:			

		TR	KAFF	IC SI	GNA	L W	ARR	ANTS	3				
City/	/Town: Kuna,	Kuna, ID Analysis				ysis Per	Performed By:						
С	County: ADA Co	ounty			Date A	nalysis I	Perform	ed:		4/:	3/2020		
Di	vision:	Project Number if Applicat				ole:							
Data	ı Date:	Weather Conditions:											
Major I	Route: Co	Columbia Appr. Lanes: 1				С	Critical Approach Speed (mph): 50						
Minor I	Route: Locu									, , ,			
1. Is	Level Criteria s the critical speed of maj s the intersection in a buil				•	. ,),000 pc	opulatio	n?		X Yes		No No
If Qu	uestion 1 or 2 above is ar	swered	"Yes",	then use	e "70%"	volume	level				X 70°	%	1009
WARI	RANT 1 - EIGHT-H	OUR	VEHI	CULA	R VO	LUME							
	rant 1 is satisfied if Condition						_		Satisf	ied:	X Ye	s \Box	No
	rant is also satisfied if both C					0%" satis	sfied, give	en					4
adeq	quate trials of other remedial	measure	es have l	een tried	d.								
Ade	equate trial(s) of other re										Ye	s X	No
	<u>List Remedial Me</u>	easures	Tried (F	Required	d for 80	% Comb	pination	of A & I	<u>B)</u>		— 7		
9	<u> Condition A - Minimu</u>	<u>m Vehi</u>	<u>cular \</u>	<u>/olume</u>	e & Coi	<u>ndition</u>	B - Int	terrupt	<u>ion of</u>	Contin	านอนร	<u>Traffic</u>	
	Condition A - Minimum Vehicular Volume & Condition B - Interruption of Continuous Traffic												
	100% Satisfied: X Yes No											s	
	_	/II I **	• • • • • •	0 "		·	4" 6"			ed:	XYe		No
		Used if	neithe	r Condi		or B is s	satisfie			ed:			
ſ		Used if	neithe	r Condi		or B is s	satisfie	d) 80%	Satisfic	ed: ed:	X Ye		No
					tion A			d) 80% Eig	Satisfie	ed: ed: nest Ho	X Yes	s _	No No
	(volumes in veh/hr)	Minir		equiren	ition A o			d) 80% Eig	Satisfie	ed: ed: nest Ho	X Yes	s _	No No
		Minir	mum R	equiren 2 or	nents		satisfie	d) 80% Eig	Satisfie	ed: ed: nest Ho	X Yes	s _	No No
T	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches	Minir	mum R 1 70%	equiren 2 or 100%	nents more	March March	Na Na	Eig	Satisfie	ed: ed: nest Ho	Yes	S Way	No No
1A 00%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street	Mini 100% 500	mum R 1 70% 350	equiren 2 or 100%	nents more 70%	434	383	d) 80% Eig 2 536	Satisfie the High	ed: nest Ho	Yes	570	No No No 38:
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minin 100% 500 150	mum R 1 70% 350	equiren 2 or 100% 600	nents more 70% 420	March March	Na Na	Eig	Satisfie	ed: ed: nest Ho	Yes	S Way	No No No 38:
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minir 100% 500 150	mum R 1 70% 350 105	equiren 2 or 100% 600 200 equiren	nents more 70% 420 140	434	383	d) 80% Eig 2 536	Satisfie the High	ed: nest Ho	Yes	570	No No No 38:
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minir 100% 500 150	mum R 1 70% 350 105 mum R	equiren 2 or 100% 600 200 equiren 2 or	nents more 70% 420 140 nents more	434	383	d) 80% Eig 2 536	Satisfie the High	ed: nest Ho	Yes	570	No No No 38:
W - 1A 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minir 100% 500 150	mum R 1 70% 350 105	equiren 2 or 100% 600 200 equiren	nents more 70% 420 140 nents more	434	383	d) 80% Eig 2 536	Satisfie the High	ed: nest Ho	Yes	570	No No 383
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches	Minir 100% 500 150	mum R 1 70% 350 105 mum R	equiren 2 or 100% 600 200 equiren 2 or	nents more 70% 420 140 nents more	434	383	d) 80% Eig 2 536	Satisfie the High	ed: nest Ho	Yes	570	No No 38:
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street	Minin 100% 500 150 Minin 100% 750	mum R 1 70% 350 105 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100% 900	nents more 70% 420 140 ments more 70% 630	434 218	383 192 383	6) 80% Eig 536 269	Satisfication in High	ed: ed: nest Ho 901 452	X Yes Yes	570 286	No No 38: 19:
W - 1B W - 1A 100% 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minir 100% 500 150 Minir	mum R 1 70% 350 105 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100%	nents more 70% 420 140 nents more 70%	434 218	383 192	6) 80% Eig 536 269	Satisfic ht High children in the satisfication of t	ed: ed: nest Ho political	X Yes Yes	570 286	No No 383 383 383
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	Minir 100% 500 150 Minir 100% 750	mum R 1 70% 350 105 mum R 1 70% 525	equiren 2 or 100% 600 200 equiren 2 or 100% 900	nents more 70% 420 140 nents more 70% 630	434 218	383 192 383	6) 80% Eig 536 269	Satisfication in High	ed: ed: nest Ho 901 452	X Yes Yes	570 286	No No 383 383 383
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minin 100% 500 150 Minin 750 75	mum R 1 70% 350 105 mum R 1 70% 525	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren	nents more 70% 420 140 nents more 70% 630 70 nents	434 218	383 192 383	6) 80% Eig 536 269	Satisfication in High	ed: ed: nest Ho 901 452	X Yes Yes	570 286	No No 388 388 388
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes	Minin 100% 500 150 Minin 750 75	mum R 1	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or	nents more 70% 420 140 nents more 70% 630 70 nents more	434 218	383 192 383	6) 80% Eig 536 269	Satisfication in High	ed: ed: nest Ho 901 452	X Yes Yes	570 286	No No 38: 19:
W - 1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level	Minin 100% 500 150 Minin 750 75 Minin 100%	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100%	nents more 70% 420 140 nents more 70% 630 70 nents more 70%	434 218 434 218	383 192 383 192	536 269	672 337	ed: ed: nest Ho pol 452 901 452	X Yes	570 286 570 286	No No 383 192 383 192
W - 1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches	Minin 100% 500 150 Minin 750 75	mum R 1	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or	nents more 70% 420 140 nents more 70% 630 70 nents more	434 218	383 192 383	6) 80% Eig 536 269	Satisfication in High	ed: ed: nest Ho 901 452	X Yes Yes	570 286	No No 383 192 383 192
W - 1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	Minin 100% 500 150 Minin 750 75 Minin 100%	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70%	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100%	nents more 70% 420 140 nents more 70% 630 70 nents more 70%	434 218 434 218	383 192 383 192	536 269	672 337	ed: ed: nest Ho pol 452 901 452	X Yes	570 286 570 286	No No No 383 192 383 383
1 W-1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Minor Street Highest Approach on Major Street Highest Approaches on Major Street Highest Approach on Minor Street	Minin 100% 500 150 Minin 750 75 Minin 100% 400 120	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336	434 218 434 218 434	383 192 383 192 383	536 269 536	Satisfic (ht High Satisfic Sat	ed: ed: 100	X Yes Yes	570 286 570	No No No 383 192 383 383
W - 1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	Minin 100% 500 150 Minin 750 75 Minin 400 120 Minin	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84 mum R	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160 equiren	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112	434 218 434 218 434	383 192 383 192 383	536 269 536	Satisfic (ht High Satisfic Sat	ed: ed: 100	X Yes Yes	570 286 570	No No No 383 192 383 383
W - 1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Minor Street Highest Approach on Major Street Highest Approaches on Major Street Highest Approach on Minor Street	Minin 100% 500 150 Minin 750 75 Minin 400 120 Minin	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160 equiren	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112 nents more	434 218 434 218 434	383 192 383 192 383	536 269 536	Satisfic (ht High Satisfic Sat	ed: ed: 100	X Yes Yes	570 286 570	No
8 W - 1A W - 1B 80% 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street Highest Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches On Minor Street	Minin 100% 500 150 Minin 100% 750 75 Minin 400 120 Minin	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84 mum R	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 equiren 2 or 100% 480 160 equiren 2 or	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112 nents more	434 218 434 218 434	383 192 383 192 383	536 269 536	Satisfic (ht High Satisfic Sat	ed: ed: 100	X Yes Yes	570 286 570	No No No 383 192 383 383
W - 1B 100%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street (volumes in veh/hr) Approach Lanes Volume Level Highest Approach on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level	Minir 100% 500 150 Minir 100% 750 75 Minir 400 120 Minir 600	mum R 1 70% 350 105 mum R 1 70% 525 53 mum R 1 70% 280 84 mum R 1 70% 420	equiren 2 or 100% 600 200 equiren 2 or 100% 900 100 480 160 equiren 2 or 100% 720	nents more 70% 420 140 nents more 70% 630 70 nents more 70% 336 112 nents more 70% 504	434 218 434 218 434 218	383 192 383 192 383 192	536 269 536 269 536	Satisfic (ht High Satisfic Sat	ed: ed: 1001 1001 1001 1001 1001 1001 1001 10	X Yes Yes	570 286 570 286 570 286	38. 38. 19. 38. 19.

on Minor Street | 50 | 72 | 50 | 50 | 210 | 132 | 203 | 337 | 732 | 710 | 200 | 132

TRAFFIC SIGNAL WARRANTS

WARRANT 2 - FOUR-HOUR VEHICULAR VOLUME

Satisfied: X Yes No

If all four points lie above the appropriate line, then this warrant is satisfied.

	Fo	ur High	est Ho	urs
	Md	PIM	5 PM	6 PM
(Volumes in veh/hr)	ر ج	4	2'	9
SUM of Both Approaches on Major Street	672	901	833	570
Highest Minor Street Approach	337	452	418	286

* Note: 115 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 80 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

60 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

		SNAL WARRANT SUN	
City/Town: County:	Kuna, ID ADA County	Analysis Performed By: Date Analysis Performed:	RB 4/3/2020
Division:	ADA County	Project Number if Applicable:	47.07.2020
Data Date:	2025 Background	Weather Conditions:	
Major Route:	Columbia	Appr. Lanes: 1	Critical Approach Speed (mph): 50
Minor Route:	Locust Grove	Appr. Lanes: 1	
1A - Minimum 1B - Interruptio	·	80% Satisfied X Yes No Yes X No es Tried and their Outcome.	SATISFIED X Yes No 100% Satisfied X Yes No Yes X No
<i>N</i> arrant #2: Fo	our-Hour Vehicular Volu	<u>me</u>	X Yes No
Warrant #3: Pe	ak Hour		Yes X No
	The Unusual Case(s) that .	Justifies the use of this Warrant	t.
Warrant #4: Pe	destrian Volume		Yes X No
Warrant #5: Sc	haal Crassing		Nos VNo
	· ·	ted to improve the Safety of the	Yes X No
	-	-	
Warrant #6: Co	oordinated Signal Systen	<u>1</u>	Yes X No
Warrant #7: Cr	ash Experience		Yes X No
	Other Alternatives that	have failed to reduce crashes.	<u> </u>
Warrant #8: Ro	oadway Network		Yes X No
Warrant #9: In	tersection Near a Grade	Crossing	Yes X No
CONCLUSIONS	<u> </u>	Warrants Satisfied	l: 1 2
Remarks:			
aroman no.			

Div Data Major R Minor R	Route: Lak				•	ysis Per nalysis I		·		4/:	RB 3/2020		
Div Data Major R Minor R	vision: Date: Route: Lak	unty			Date A	nalysis l	Perform	ed:		4/:	3/2020		
Div Data Major R Minor R	vision: Date: Route: Lak						is Performed: 4/3/2020						
Major R Minor R	Route: Lak		Project Number if Applical										
Major R Minor R	Route: Lak		, , , , , , , , , , , , , , , , , , , ,										
Minor R													
	Pourto:	Lake Hazel Appr. Lanes: 1					Cı	ritical Ap	oproach	Speed	(mph):	50	
Volume	toute. Locu	st Grov	'e		A	ppr. Lan	ies: 1						
1. Is	Level Criteria the critical speed of major the intersection in a built				•	. ,),000 pc	opulatio	ո?		X Yes	; <u> </u>	No No
If Qu	estion 1 or 2 above is an	swered	"Yes", t	then use	e "70%"	volume	level				X 70%	6 	100%
WARR	RANT 1 - EIGHT-H	OUR 1	VEHI	CULA	R VO	LUME	=						
							-		Satisfi	مط	□v _a ,		lnia
	ant 1 is satisfied if Condition						oficed aire	on	Sausii	eu.	Yes	, <u>X</u>	No
	ant is also satisfied if both C uate trials of other remedial					J‰" satis	itiea, give	∍n					
•													181-
Adec	quate trial(s) of other re List Remedial Me					% Coml	hination	of 4 & i	R)		Yes	5 <u>X</u>	No
	<u>List Nemediai iwe</u>	asurcs	Tricu (I	<u>xequiree</u>	<u> </u>	76 COITIL	mation	OI A & I	<u> </u>		Ī		
<u> </u>											ı		
<u>C</u>	Condition A - Minimur	<u>n Vehic</u>	cular \	<u>/olume</u>	& Cor	<u>ndition</u>	B - Int	errupt	ion of	Contin	<u>uous </u>	<u> </u>	<u>.</u>
								100%	Satisfie	ed:	Yes	X	No
	(Used if	neithe	r Condi	tion A	or B is :	satisfie	d) 80%	Satisfie	ed:	Yes	X	No
_						_							
	(volumes in veh/hr)	Minir	num R	equiren	nonte				ht High		urs		
	Approach Lanes	1		2 or		No 2	Wa'	Mo ?	My c	MON	No S	Mos	ZM
	Volume Level	100%	70%	100%	70%	₹,	1	2	6	W	8	9	1
	Both Approaches	500	350	600	420	391	407	338	568	740	1,024	648	380
W - 1A 100%	on Major Street	300	330	000	720	331	407	330	300	740	1,024	040	300
₹ 6	Highest Approach on Minor Street	150	105	200	140	198	201	180	323	499	650	409	251
	(volumes in veh/hr)	Minir	num R	equiren	nents								
	Approach Lanes	1			more								
⊩	Volume Level	100%	70%	100%									
m -	Both Approaches	750	525	900	630	391	407	338	568	740	1,024	648	380
W - 1B 100%	on Major Street	, 50	J20	300	300		-01	333	300	, 40	.,024	340	300
≥ 5	Highest Approach on Minor Street	75	53	100	70	198	201	180	323	499	650	409	251
 -	(volumes in veh/hr)	Minir	num R	equiren	nents								
⊩	Approach Lanes	1		•	more								
	Volume Level	100%	70%	100%									
<u>_</u>	Both Approaches	400	280	480	336	391	407	338	568	740	1,024	648	380
W - 1A 80%	on Major Street	400	200	400	JJ0	397	40/	338	308	740	1,024	048	360
Highest Approach 120 84 160 112 198 201 180 323 499 650 409 25								251					
<u> </u>	on Minor Street (volumes in veh/hr)			equiren									
⊩	Approach Lanes	1		•	more								
⊩	Volume Level	100%	70%	100%									
II													
V - 1B 80%	Both Approaches on Major Street	600	420	720	504	391	407	338	568	740	1,024	648	380

on Minor Street | 50 | 72 | 50 | 50 | 130 | 201 | 100 | 320 | 733 | 500 | 703 | 201

TRAFFIC SIGNAL WARRANTS

WARRANT 2 - FOUR-HOUR VEHICULAR VOLUME

Satisfied: No

If all four points lie above the appropriate line, then this warrant is satisfied.

	Fo	ur High	est Ho	urs
	Wa	Ma	Ma	Ma
(Volumes in veh/hr)	3,	4	2'	<i>d9</i>
SUM of Both Approaches on Major Street	568	740	1,024	648
Highest Minor Street Approach	323	499	650	409

Note: 115 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 80 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

60 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

		SNAL WARRANT SUN	
City/Town: County:	Kuna, ID ADA County	Analysis Performed By:	RB 4/3/2020
Division:	7.27. County	Project Number if Applicable:	
Data Date:	2025 Background	Weather Conditions:	
Major Route:	Lake Hazel	Appr. Lanes: 1	Critical Approach Speed (mph): 50
Minor Route:	Locust Grove	Appr. Lanes: 1	
1A - Minimum	ght-Hour Vehicular Vol Vehicular Volume: on of Continuous Traffic: Any Remedial Measur	80% Satisfied X Yes No Yes X No es Tried and their Outcome.	SATISFIED Yes X No 100% Satisfied Yes X No Yes X No
Varrant #2: Fo	our-Hour Vehicular Volu	<u>me</u>	X Yes No
Warrant #3: Pe	eak Hour		Yes X No
	<u></u>	Justifies the use of this Warrant	
Warrant #4: Pe	edestrian Volume		Yes X No
Warrant #5: Sc	hool Crossing		Yes X No
	S .	ted to improve the Safety of the	
	•	,	
Warrant #6: Co	oordinated Signal Systen	<u>n</u>	Yes X No
<u> Varrant #</u> 7: Cr	ash Experience		Yes X No
	-	have failed to reduce crashes.	
Warrant #8: Ro	oadway Network		Yes X No
Warrant #9: In	tersection Near a Grade	Crossing	Yes X No
CONCLUSIONS	<u> </u>	Warrants Satisfied	l: 2
D			
Remarks:			

Hubbard and Stroebel LT lane not warranted.

Figure 2 – Left-Turn Lane Guidelines for Two-Lane Roads, 45 mph

The following data are required:

- 1. Opposing Volume (veh/hr) VO The opposing volume is to include only the right-turn and through movements in the opposite direction of the left turning vehicle.
- 2. Advancing Volume (veh/hr) VA The advancing volume is to include the right-turn, left-turn and through movements in the same direction as the left turning vehicle.
- 3. Operating Speed (mph) The greatest of anticipated operating speed, measured 85th percentile speed or posted speed.
- 4. Percentage of left turns in VA

Left-turn lane is not needed for left-turn volume less than 10 vph. However, criteria other than volume, such as crash experience, may be used to justify a left-turn lane.

The appropriate trend line is identified on the basis of the percentage of left-turns in the advancing volume, rounded up to the nearest percentage trend line. If the advancing and opposing volume combination intersects above or to the right of this trend line, a left-turn lane is appropriate.

Source: NCHRP Report 279 and 457

Adopted: Res. 469 (7/13/94) 7100 - 36

Revised: Res. 675 (1/29/03); Res. 904 (8/19/09); Ord. 217 (9/14/11); Ord. 232 (12/7/16); Ord. 233

(1/25/17); Ord. 238 (12/12/18)

Figure 3 – Left-Turn Lane Guidelines for Two-Lane Roads, 50 mph

The following data are required:

- 1. Opposing Volume (veh/hr) VO The opposing volume is to include only the right-turn and through movements in the opposite direction of the left-turning vehicle.
- 2. Advancing Volume (veh/hr) VA The advancing volume is to include the right-turn, left-turn and through movements in the same direction as the left-turning vehicle.
- 3. Operating Speed (mph) The greatest of anticipated operating speed, measured 85th percentile speed or posted speed.
- 4. Percentage of left-turns in VA

Left-turn lane is not needed for left-turn volume less than 10 vph. However, criteria other than volume, such as crash experience, may be used to justify a left-turn lane.

The appropriate trend line is identified on the basis of the percentage of left-turns in the advancing volume, rounded up to the nearest percentage trend line. If the advancing and opposing volume combination intersects above or to the right of this trend line, a left-turn lane is appropriate.

Source: NCHRP Report 279 and 457

Adopted: Res. 469 (7/13/94) 7100 - 37

Revised: Res. 675 (1/29/03); Res. 904 (8/19/09); Ord. 217 (9/14/11); Ord. 232 (12/7/16); Ord. 233

(1/25/17); Ord. 238 (12/12/18)

Figure 6 – Right-Turn Lane Guidelines for Two-Lane Roadways

The following data are required:

- 1. Advancing Volume (veh/hr) The advancing volume is to include the right-turn, left-turn and through movements in the same direction as the right-turning vehicle.
- 2. Right-Turning Volume (veh/hr) The right-turning volume is the number of advancing vehicles turning right.
- 3. Operating Speed (mph) The greatest of anticipated operating speed, measured 85th percentile speed or posted speed.

Note: Right-turn lane is not needed for right-turn volume less than 10 vph. However, criteria other than volume, e.g. crash experience, may be used to justify a right-turn lane.

If the combination of major road approach volume and right-turn volume intersects above or to the right of the speed trend line corresponding to the major road operating speed, then a right-turn lane is appropriate.

Source: NCHRP Report 279 and 457

Adopted: Res. 469 (7/13/94) 7100 - 40

Revised: Res. 675 (1/29/03); Res. 904 (8/19/09); Ord. 217 (9/14/11); Ord. 232 (12/7/16); Ord. 233

(1/25/17); Ord. 238 (12/12/18)

TRAFFIC IMPACT STUDY FOR LEDGESTONE SOUTH SUBDIVISION ADA COUNTY, ID

Prepared for: TRILOGY DEVELOPMENT, INC. 9839 W. Cable Car Street, Ste. 101 Boise, ID 83709

Prepared By:

WHPacific AN NIVIS COMPANY

2141 W. Airport Way, Ste. 104 Boise, ID 83705 (208) 342-5400

October 23, 2019

EXECUTIVE SUMMARY

This study was prepared in accordance with the ADA County Highway District's (ACHD's) requirements for a Traffic Impact Study listed in Section 7106 of the current *ACHD Policy Manual*. It evaluates the traffic impacts associated with the Ledgestone South Subdivision in Kuna, ID. The study area, scope and specific analysis parameters and requirements are the result of an Area of Influence Review performed by the Community Planning Association of Southwest Idaho (COMPASS) and discussion with ACHD. The study's principal findings and recommendations are summarized below.

Proposed Development

- 1.0 Ledgestone Subdivision is a proposed development consisting of 431 single-family dwelling units on a 95.95 acre parcel located south of Hubbard Road, between Meridian Road (SH 69) and Locust Grove Road located in Ada County, Idaho.
- 2.0 The development is planned to be constructed over a period of approximately six years, or to the year 2025. Due to the short duration of buildout, an interim evaluation was not required by ACHD.
- 3.0 The proposed development is expected to generate 4,069 daily trips, 319 AM peak hour trips and 427 PM peak hour trips.
- 4.0 The primary roadway network serving this proposed subdivision includes the following roadway segments and intersections:

Intersections:

- Hubbard Road and SH69 (Meridian Road)
- Locust Grove Road and Deer Flat Road
- Locust Grove Road and Hubbard Road
- Locust Grove Road and Columbia Road
- Locust Grove Road and Lake Hazel Road
- All site access points

Segments:

- Hubbard Rd between SH69 and Locust Grove Rd
- Hubbard Rd between Locust Grove Rd and Eagle Rd
- Locust Grove Rd between Deer Flat Rd and Hubbard Rd
- Locust Grove Rd between Hubbard Rd and Columbia Rd
- Locust Grove Rd between Columbia Rd and Lake Hazel Rd
- Locust Grove Rd between Lake Hazel Rd and Amity Rd
- All internal collectors

Primary access to the site will be provided via S. Stroebel Road, constructed along the $\frac{1}{2}$ mile alignment, between Meridian Road and Locust Grove Road and an easterly access on Locust Grove Road.

Proposed Mitigation for Existing Traffic

5.0 For the existing traffic conditions analyzed with the existing roadway lane configuration, all study area roadways meet ACHD's minimum operational thresholds. No roadway improvements are needed to mitigate existing traffic.

6.0 For the existing traffic conditions analyzed with the existing intersection control and lane configuration, all study area intersections meet ACHD's minimum operational thresholds. No intersection improvements are needed to mitigate the existing traffic.

Proposed Mitigation for 2025 Background Traffic

- 7.0 For the 2025 Background traffic conditions analyzed with the existing roadway lane configuration, all study area roadways meet ACHD's minimum operational thresholds. No roadway improvements are needed to mitigate 2025 Background traffic.
- 8.0 For the 2025 Background traffic conditions analyzed with the existing intersection control and lane configuration, one of the study area intersections does not meet ACHD's minimum operational thresholds. The intersection of Lake Hazel Road and Locust Grove performs poorly in the PM peak hour under AWSC and is expected to meet at least one traffic signal warrant under 2025 Background conditions. While installation of a traffic signal may be a viable option, ACHD's CIP has programmed a single-lane roundabout at this location. Under this scenario, traffic operations are improved to LOS B or better.

Proposed Mitigation for 2025 Site Plus Background Traffic

- 9.0 For the 2025 Site Plus Background traffic conditions analyzed with the existing roadway lane configuration, all study area roadways meet ACHD's minimum operational thresholds. No roadway improvements are needed to mitigate 2025 Site Plus Background traffic.
- 10.0 For the 2025 Site Plus Background traffic conditions analyzed with the existing (and 2025 Background improvements) intersection control and lane configuration, all study area intersections meet ACHD's minimum operation thresholds. Therefore, no intersection improvements are needed to mitigate 2025 Site Plus Background traffic.

PROPOSED DEVELOPMENT

Project Description

The Ledgestone Subdivision is a proposed development consisting of 431 single-family dwelling units on a 95.95 acre parcel located south of Hubbard Road, between Meridian Road (SH 69) and Locust Grove Road. Primary access to the site will be provided via S. Stroebel Road, constructed along the ½ mile alignment, between Meridian Road and Locust Grove Road and south of the Mason Creek Ditch on Locust Grove Road. The existing site is currently undeveloped farm land and is zoned Rural Residential (RR). The project proposes to rezone to Medium Density Residential (R6). The proposed site plan is illustrated in Figure 1.

Buildout of the Ledgestone Subdivision is expected to occur over an approximate six-year period, or by 2025. Due to the short duration of buildout an interim phasing is not anticipated.

STUDY APPROACH

This Traffic Impact Study is required by ACHD as part of the development approval process and follows the requirements for Traffic Impact Studies listed in Section 7106 of the current ACHD Policy Manual.

Initial Meeting

Upon discussion with ACHD staff, an initial meeting for purposes of the TIS was deemed unnecessary as ACHD previously met with the developer (Trilogy) to discuss the context of the project. Subsequent to this discussion, the Community Planning Association of Southwest Idaho (COMPASS) performed an Area of Influence model run from which ACHD developed the review limits for the TIS. The proposed development falls within TAZ 1181. The current COMPASS model assumes 6 households (HH) and 0 jobs within this TAZ. Under the proposed development of 431 single-family homes, the total HH equals 437. Using the 2025 forecast year, COMPASS ran the model with and without the proposed development to confirm likely trip impacts. The review concluded that the following intersections and roadway segments be include in the TIS evaluation:

Intersections:

- Hubbard Road and SH69 (Meridian Road)
- Locust Grove Road and Deer Flat Road
- Locust Grove Road and Hubbard Road
- Locust Grove Road and Columbia Road
- Locust Grove Road and Lake Hazel Road
- All site access points

Segments:

- Hubbard Rd between Meridian Rd and Locust Grove Rd
- Hubbard Rd between Locust Grove Rd and Eagle Rd
- Locust Grove Rd between Deer Flat Rd and Hubbard Rd
- Locust Grove Rd between Hubbard Rd and Columbia Rd
- Locust Grove Rd between Columbia Rd and Lake Hazel Rd
- Locust Grove Rd between Lake Hazel Rd and Amity Rd
- All internal collectors

This Area of Influence analysis as provided to ACHD is included in the Appendix.

Figure 1 Proposed Site Plan

Study Area

In accordance with the Area of Influence review performed by COMPASS the following intersections and roadway segments will be reviewed:

Intersections:

- Hubbard Road and SH69 (Meridian Road)
- Locust Grove Road and Deer Flat Road
- Locust Grove Road and Hubbard Road
- Locust Grove Road and Columbia Road
- Locust Grove Road and Lake Hazel Road
- All site access points

Segments:

- Hubbard Rd between Meridian Rd and Locust Grove Rd
- Hubbard Rd between Locust Grove Rd and Eagle Rd
- Locust Grove Rd between Deer Flat Rd and Hubbard Rd
- Locust Grove Rd between Hubbard Rd and Columbia Rd
- Locust Grove Rd between Columbia Rd and Lake Hazel Rd
- Locust Grove Rd between Lake Hazel Rd and Amity Rd
- All internal collectors

Study Period

The study periods will include:

- Existing (2019)
- 2025 Background
- 2025 Site Plus Background (Total)

The following time intervals will be evaluated:

- Weekday AM Peak Hour
- Weekday PM Peak Hour

As this development is comprised entirely of single-family homes, a weekend peak hour review was not deemed necessary.

ANALYSIS OF EXISTING (2019) CONDITIONS

Roadway Network

Table 1 summarizes the characteristics of the roadway network within the study area.

Table 1 – Study Area Roadways

Roadway	Functional Classification	Posted Speed (mph)	Lanes (total)
SH69	Principal Arterial	55	5 (includes TWLTL)
Columbia Road	Minor Arterial	50	2
Hubbard Road	Minor Arterial	45	2
Locust Grove Road	Minor Arterial	50	2

 $Functional\ Classification\ noted\ in\ accordance\ with\ 2040\ Functional\ Classification\ Map,\ COMPASS$

TWLTL = Two-Way-Left Turn Lane

All but one of the intersections within the study area are stop-controlled (unsignalized). A four-way stop exists at Locust Grove Road and Columbia Road and Locust Grove and Lake Hazel Road. A two-way stop in the northbound and southbound directions is present at Locust Grove Road and Hubbard Road and Locust Grove and Deer Flat Road. At SH69 and Hubbard Road, a traffic signal is present. Figure 2 illustrates existing lane configuration and traffic control conditions.

Transit Service

Due to the rural nature of the study area no existing transit routes in the vicinity exist. The closest available transit routes are located along Overland Road to the north, with stops in the vicinity of Eagle Road and SH69.

Bicycle and Pedestrian Facilities

No bicycle or pedestrian facilities exist within the study area.

Traffic Volumes

Existing 24-hour counts and intersection turn movement counts were previously collected on Tuesday, August 7, 2018 for the Ledgestone Subdivision TIS (dated October 10, 2018). 24-hour counts were recorded at 1) Hubbard Road, between SH69 and Locust Grove Road and 2) Locust Grove Road, between Hubbard Road and Columbia Road. Intersection turn movement counts were recorded between 7:00 AM – 9:00 AM and 4:00 PM to 6:00 PM in order to isolate the AM and PM peak hour conditions. Intersection count locations included 1) Hubbard Road and Meridian Road, 2) Hubbard Road and Locust Grove Road and 3) Locust Grove Road and Columbia Road. To augment this data additional 24-hour counts were recorded on September 10, 2019 at 1a) Locust Grove Road, between Hubbard Rd and Deer Flat Road and 2b) Locust Grove Road, between Columbia Road and Lake Hazel Road. Additional intersection turn movement counts were recorded at 1a) Locust Grove Road Lake Hazel Road and 2b) Locust Grove Road and Deer Flat Road. Figure 3 illustrates existing 24-hour and intersection turn movement counts. Detailed count summaries are also included in the Appendix.

Intersection Crash Data

The most current crash data (2012–2017) as documented by the Local Highway Technical Assistance Council (LHTAC) website (http://gis.lhtac.org/safety/) was reviewed. Table 2 summarizes crash records at each of the study area intersections.

Table 2 – Intersection Crash Data (2012-2017)

Intersection	Total Crashes	PDO/Injury/Fatal	
SH69 and Hubbard Rd	23	11/12/0	
Locust Grove Rd and Deer Flat Rd	5	3/2/0	
Locust Grove Rd and Hubbard Rd	3	1/2/0	
Locust Grove Rd and Columbia Rd	8	3/5/0	
Locust Grove Rd and Lake Hazel Rd	3	2/1/0	

Crash frequencies are relatively low at each of the study area intersections. Also, it should be noted that crash data at SH69 and Hubbard Road includes years prior to installation of a traffic signal at that location. According to the Crash Modifications Factors Clearinghouse

Figure 3 Existing Traffic Volumes

(http://www.cmfclearinghouse.org), installation of a traffic signal has the potential to reduce crashes up to 77%, although data is highly variable.

Level-of-Service Roadway Segments

ACHD has developed level-of-service (LOS) thresholds for roadway segments based on directional peak hour volumes for various roadway functional classifications, number of lanes and left-turn treatments. Based on the current *ACHD Policy Manual*, the minimum acceptable LOS for a roadway segment is LOS E for principal arterials and minor arterials, and LOS D for collectors. Table 3 summarizes ACHD's LOS thresholds for roadway segments.

Table 3 – ACHD LOS Thresholds for Roadway Segments

Functional Classification	Lanes		
		LOS D	LOSE
Principal Arterials		1000	
No Left-Turn Lanes	1		
	1	600	690
Continuous Center Left-Turn Lane			
	1	770	880
	2	1680	1780
	3	2560	2720
Median-Control, Channelized Left-Turn Lanes @ Major Intersections			
	1	850	920
	2	1860	1960
	3	2800	3000
Minor Arterials			
No Left-Turn Lane			
	1	540	575
Unrestricted Median, Continuous Left-Turn Lane			
	1	675	720
	2	1395	1540
	3	2155	2370
Median-Control, Channelized Left-Turn Lanes @ Major Intersections			
	1	710	770
	2	1465	1670
	3	2270	2530
Collectors	1		la management
No Left-Turn Lanes			
	1	425	525
Unrestricted Median, Continuous Left-Turn Lane			
	1	530	660
	2	1080	1250

Table 4 summarizes the existing LOS for the roadway segments in the study area. As noted, all roadway segments currently operate at LOS D or better under the current lane configuration and traffic volumes. No roadway improvements are needed to mitigate existing traffic conditions.

Table 4 – Roadway Segment LOS – Existing (2019) Traffic

	No. of			Threshold Volume		AM Peak Hour Major Direction		PM Peak Hour Major Direction	
Roadway Segment	Functional Class	Thru Lanes	Left-Turn Treatment	LOS D	LOS E	Vol (vph)	LOS	Vol (vph)	LOS
Hubbard Rd, SH69 to Locust Grove Rd	Minor Arterial	1	No LT Lane	540	575	35	< D	47	< D
Hubbard Rd, Locust Grove to Eagle	Minor Arterial	1	No LT Lane	540	575	19	< D	19	< D
Locust Grove Rd, Deer Flat to Hubbard	Minor Arterial	1	No LT Lane	540	575	39	< D	101	< D
Locust Grove Rd, Hubbard to Columbia	Minor Arterial	1	No LT Lane	540	575	52	< D	71	< D
Locust Grove Rd, Columbia to Lake Hazel	Minor Arterial	1	No LT Lane	540	575	116	< D	142	< D
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	1	No LT Lane	540	575	169	< D	254	< D

Level-of-Service Intersections

Intersection LOS was evaluated using *Highway Capacity Software (HCS7)*. In accordance with the *ACHD Policy Manual*, the maximum overall v/c ratio is 0.90 for signalized intersection. For unsignalized intersections, the intersection v/c ratio is undefined. The maximum lane group v/c ratio for signalized and unsignalized intersections is 1.0. Each of the intersections within the study area was evaluated under existing traffic control, lane configuration and peak hour volumes. *HCS7* Reports are included in the Appendix and results are summarized in Table 5.

Table 5 – Intersection Traffic Operations – Existing (2019) Traffic

Intersection	Traffic Control Lane Group	AM LOS/Delay/v/c	PM LOS/Delay/v/c
Hubbard Rd/	Traffic Signal	C/27.1	C/24.3
SH69	Eastbound	B/12.2/0.05	C/20.5/0.07
	Westbound	B/14.5/0.02	C/23.2/0.08
	Northbound	C/31.6/0.87	B/19.5/0.18
	Southbound	C/24.6/0.36	C/28.6/0.90

Deer Flat/	TWSC	NR	NR
Locust Grove	Eastbound	A/7.4/0.02	A/7.7/0.9/0.02
	Westbound	A/7.6/0.00	A/7.3/0.00
	Northbound	B/10.8/0.03	B/10.9/0.01
	Southbound	A/9.6/0.03	A/10.9/0.16
Hubbard/	TWSC	NR	NR
Locust Grove	Eastbound	A/7.3/0.01	A/7.3/0.00
	Westbound	A/7.3/0.00	A/7.3/0.01
	Northbound	A/9.7/0.06	A/9.3/0.03
	Southbound	A/9.2/0.02	A/9.6/0.09
Columbia/	AWSC	A/9.8	A/9.5
Locust Grove	Eastbound	B/10.7/NR	A/8.6/NR
	West bound	A/8.3/NR	B/10.2/NR
	Northbound	A/8.5/NR	A/8.1/NR
	Southbound	A/8.5/NR	A/8.8/NR
Lake Hazel/	AWSC	B/10.5	B/14.2
Locust Grove	Eastbound	B/11.4/NR	B/12.1/NR
	Westbound	B/10.3/NR	C/16.3/NR
	Northbound	A/9.7/NR	B/10.4/NR
	Southbound	A/9.4/NR	B/13.9/NR

Worst movement LOS reported at each approach

NR = not reported

TWSC = Two-way stop control AWSC = All-way stop control

All study area intersections currently operate at acceptable, LOS D or better, conditions. Reported v/c ratios are also under 1.0. No intersection improvements are needed to mitigate existing traffic conditions.

ANALYSIS OF 2025 BACKGROUND TRAFFIC CONDITIONS

Roadway Network

Both the ACHD Five-Year Work Plan (FYWP) and the ACHD Capital Improvements Plan (CIP) were reviewed for purposes of the study. The currently adopted FYWP identifies projects programmed from 2020 to 2024 while the CIP is a long-range (20 years) transportation plan identifying existing transportation facilities, existing deficiencies, and future improvement needs. The are no projects noted in the FYWP for the specific TIS review area. Long-term projects are planned at the intersections of Deer Flat and SH69, and Hubbard and SH69, and Lake Hazel Road and Locust Grove Road. At both SH69 locations, this includes traffic signal improvements and reconstruction/widening of approaches, between the years 2031 and 2035. At Lake Hazel Road and Locust Grove Road, a roundabout is planned between the years 2026 and 2030. As this work is programmed beyond the TIS review period, these projects will not be included, unless needed to achieve acceptable traffic operations in 2025.

Transit Service

Valley Regional Transit (VRT) has recently adopted (April 2018) *ValleyConnect 2.0* which is a plan for long-range transit service and related capital projects. Scenarios considered in this plan include linking Kuna to Meridian via SH69. As of now the plan is dependent on securing various funding sources and actual projects or programmed improvements are not defined. As such, no further improvements beyond the existing transit network are assumed for the project study area.

Bicycle and Pedestrian Facilities

ACHD's current FYWP and CIP do not include bicycle or pedestrian improvement projects designated for the study roadways.

Traffic Volumes

The COMPASS Area of Influence review was considered to estimate a growth rate between the years 2019 and 2025. Along Locust Grove Road, the COMPASS projected annual growth ranges from 13.2% to 28.4% between Deer Flat Road and Lake Hazel Road. This annual growth rate is even more dramatic along Hubbard Road ranging from 55.6% to 67.3%. Under the previous Ledgestone TIS review, ACHD staff recognized that growth rates this high should not be applied to existing volumes. As a secondary option and to remain consistent with other developments in the area, the *Patagonia Subdivision TIS*, *Thompson Engineers, Revised November 30, 2018* was reviewed. This TIS considered very similar traffic COMPASS growth projections along Locust Grove Road and Hubbard Road and ultimately settled on annual growth rates of 4% per year on SH69, and 10% per year on all ACHD roadways, in concurrence with ACHD. These growth rates were replicated for purposes of this TIS.

In order to forecast future 2025 AM and PM peak hour background conditions, the existing traffic counts were factored by these respective growth rates. Additionally, as traffic counts were recorded during different periods in 2018 and 2019 some minor volume imbalances were noted between intersections. Therefore, after applying the growth rates to the existing traffic counts, balancing was also completed using standard iterative methods. Resultant 2025 background volumes are depicted in Figure 4.

Off-Site Development

As indicated previously, other development is planned in the vicinity between Hubbard Road and Columbia Road. This entitled development is reflected in the COMPASS demographic data for 2025 background conditions.

Level-of-Service Roadway Segments

Table 6 summarizes the 2025 background LOS for the roadway segments in the study area. As noted, all roadway segments are projected to operate at LOS D or better under the current lane configuration and 2025 background traffic volumes. Therefore, no roadway improvements are needed to mitigate 2025 background traffic conditions.

Table 6 – Roadway Segment LOS – 2025 Background Traffic

		No. of			shold ume	AM Pea Major D	ak Hour Pirection		ak Hour Pirection
Roadway Segment	Functional Class	Thru Lanes	Left-Turn Treatment	LOS D	LOS E	Vol (vph)	LOS	Vol (vph)	LOS
Hubbard Rd, SH69 to Locust Grove Rd	Minor Arterial	1	No LT Lane	540	575	54	< D	53	< D
Hubbard Rd, Locust Grove to Eagle	Minor Arterial	1	No LT Lane	540	575	31	< D	34	< D
Locust Grove Rd, Deer Flat to Hubbard	Minor Arterial	1	No LT Lane	540	575	68	< D	148	< D
Locust Grove Rd, Hubbard to Columbia	Minor Arterial	1	No LT Lane	540	575	85	< D	131	< D
Locust Grove Rd, Columbia to Lake Hazel	Minor Arterial	1	No LT Lane	540	575	186	< D	277	< D
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	1	No LT Lane	540	575	271	< D	410	< D

Level-of-Service Intersections

Each of the intersections within the study area was evaluated under existing traffic control, lane configuration and 2025 background peak hour volumes. *HCS7* Reports are included in the Appendix and results are summarized in Table 7.

Table 7 – Intersection Traffic Operations – 2025 Background Traffic

Intersection	Traffic Control Lane Group	AM LOS/Delay/v/c	PM LOS/Delay/v/c
	Traffic Signal	C/24.4	C/22.7
	Eastbound	B/16.0/0.09	C/28.7/0.16
Hubbard Rd/ SH69	Westbound	C/21.0/0.04	C/32.8/0.16
	Northbound	C/28.3/0.88	B/19.0/0.22
	Southbound	C/21.4/0.12	C/28.8/0.92

Intersection	Traffic Control Lane Group	AM LOS/Delay/v/c	PM LOS/Delay/v/c
	TWSC	NR	NR
	Eastbound	A/7.5/0.03	A/8.1/0.03
Deer Flat/ Locust Grove	Westbound	A/7.8/0.00	A/7.4/0.00
	Northbound	B/12.3/0.07	B/12.6/0.03
	Southbound	B/10.4/0.05	B/13.5/0.28
	TWSC	NR	NR
Hubband / Laguet Crava	Eastbound	A/7.3/0.01	A/7.3/0.01
Hubbard/ Locust Grove	Westbound	A/7.3/0.00	A/7.3/0.01
	Northbound	B/10.1/0.09	A/9.9/0.06
	Southbound	A/9.5/0.05	B/10.3/0.17
	AWSC	B/13.1	B/14.4
Calumbia Dd/Laguat Coassa	Eastbound	C/15.7/NR	B/10.6/NR
Columbia Rd/ Locust Grove	Westbound	A/9.4/NR	C/17.5/NR
	Northbound	A/9.6/NR	A/9.4/NR
	Southbound	A/9.4/NR	B/11.7/NR
	AWSC	C/23.7	F/98.0
	Eastbound	D/32.6/NR	D/32.6/NR
Lake Hazel/ Locust Grove	Westbound	C/20.8/NR	F/180.0/NR
	Northbound	B/14.3/NR	C/15.2/NR
	Southbound	B/13.0/NR	F/53.4/NR
	Roundabout	A/7.7	B/10.2
	Eastbound	A/7.9/0.45	A/9.3/0.42
Lake Hazel/ Locust Grove	Westbound	A/8.0/0.43	A/9.2/0.54
	Northbound	A/8.2/0.28	A/5.9/0.14
	Southbound	A/5.2/0.14	B/13.4/0.57

Worst movement LOS reported at each approach

NR = not reported

TWSC = Two-way stop control AWSC = All-way stop control

The all-way stop at Lake Hazel Road and Locust Grove operates poorly under 2025 PM Peak Hour (Background traffic) conditions. ACHD Policy requires that intersections operating at LOS D or worse be evaluated for signalized control in accordance with the *Manual on Uniform Traffic Control Devices* (MUTCD) procedures. In accordance with these procedures, hourly traffic conditions were estimated based on projected 2025 peak hour volumes and the hourly distribution of daily traffic volumes, as recorded by the existing 24-hour counts (on Locust Grove, between Columbia Road and Lake Hazel Road). Under this scenario, it appears that this intersection would meet at least one warrant (Warrant 2, Four-Hour Vehicular Volume) for a traffic signal. For further review, the detailed signal warrant analysis is provided in the Appendix. While a traffic signal may be a viable option for this intersection, the long-term plan (2026 – 2030) for this intersection is a single lane roundabout. Desirably the maximum lane group v/c ratio for roundabouts is 0.85. Evaluation of this intersection with a single-lane roundabout yields very favorable traffic operations. As such, the subsequent intersection capacity analysis (2025 Site Plus Background) at this location will be completed assuming roundabout control.

ANALYSIS OF 2025 TOTAL (SITE PLUS BACKGROUND) TRAFFIC CONDITIONS

Trip Generation

The number of trips generated by the proposed development was estimated using rates provide in the *ITE Trip Generation Manual, 10th Edition.* Table 8 provides a summary of these results for Daily, AM Peak Hour and PM Peak hour conditions.

Table 8 – 2025 Trip Generation Summary

Land Use	ITE								
Category	Code	Size	Period	Trip Rate	Total Trips	En	ter	E:	xit
Single			Weekday (vpd)	9.44	4069	50%	2034	50%	2035
Family	210	431	AM Peak Hr(vph)	0.74	319	25%	80	75%	239
Detached Housing		DU	PM Peak Hr(vph)	0.99	427	63%	269	37%	158

Trip Distribution and Assignment

Site traffic was distributed in consideration of existing travel patterns, site layout and the generalized development within this area. These preliminary assumptions were also reviewed with ACHD for concurrence and are summarized as follows:

•	SH69 (North)	35%
•	SH69 (South)	5%
•	Locust Grove Rd (North)	40%
•	Locust Grove Rd (South)	5%
•	Hubbard Rd (East) to Eagle Rd	15%

Generally, this distribution assumes that 90% of traffic origins and destinations are to the north and east and 10% are to the south. Figure 5 illustrates the resultant site traffic distribution.

Site Plus Background Traffic

Site traffic was added to the 2025 Background traffic in order to produce the 2025 Site Plus Background (Total) traffic conditions with the proposed development. Figure 6 illustrates the resultant traffic volumes for AM and PM peak hour conditions. Figure 7 depicts the percent increase realized by site generated traffic at each intersection (as compared to 2025 background volumes).

Level-of-Service Roadway Segments

Table 9 summarizes the 2025 Site Plus Background (Total) LOS for the roadway segments in the study area. As noted, all roadway segments are projected to operate at LOS D or better under the current or previously improved lane configuration and 2025 Site Plus Background volumes. No roadway improvements are needed to mitigate these conditions.

Figure 5 Estimated Peak Hour Site Traffic Volumes

Figure 6 2025 Site Plus Background Traffic Volumes

Figure 7 Projected Percent Increase

Table 9 – Roadway Segment LOS – 2025 Site Plus Background Traffic

		No. of			shold ume		ak Hour Pirection		ık Hour irection
Roadway Segment	Functional Class	Thru Lanes	Left-Turn Treatment	LOS D	LOS E	Vol (vph)	LOS	Vol (vph)	LOS
Hubbard Rd, SH69 to Locust Grove Rd	Minor Arterial	1	No LT Lane	540	575	124	< D	141	< D
Hubbard Rd, Locust Grove to Eagle	Minor Arterial	1	No LT Lane	540	575	67	< D	75	< D
Locust Grove Rd, Deer Flat to Hubbard	Minor Arterial	1	No LT Lane	540	575	172	< D	262	< D
Locust Grove Rd, Hubbard to Columbia	Minor Arterial	1	No LT Lane	540	575	181	< D	238	< D
Locust Grove Rd, Columbia to Lake Hazel	Minor Arterial	1	No LT Lane	540	575	282	< D	384	< D
Locust Grove Rd, Lake Hazel to Amity	Minor Arterial	1	No LT Lane	540	575	367	< D	517	< D

Level-of-Service Intersections

Each of the intersections within the study area was evaluated under existing (or previously mitigated) traffic control, lane configuration and 2025 site plus background peak hour volumes. *HCS7* Reports are included in the Appendix and results are summarized in Table 10.

Table 10 – Intersection Traffic Operations – 2025 Site Plus Background Traffic

Intersection	Traffic Control Lane Group	AM LOS/Delay/v/c	PM LOS/Delay/v/c
	Traffic Signal	C/24.4	C/23.0
	Eastbound	B/18.3/0.10	C/29.6/0.17
Hubbard Rd/ SH69	Westbound	C/25.3/0.24	D/36.9/0.38
	Northbound	C/28.5/0.88	B/19.9/0.22
	Southbound	C/20.6/0.25	C/28.8/0.92
	TWSC	NR	NR
	Eastbound	A/7.5/0.03	A/8.1/0.03
Deer Flat/ Locust Grove	Westbound	A/7.8/0.00	A/7.4/0.00
	Northbound	B/12.5/0.08	B/13.1/0.06
	Southbound	B/11.2/0.08	B/13.9/0.30

	Traffic Control		
	Lane	AM	PM
Intersection	Group	LOS/Delay/v/c	LOS/Delay/v/c
	TWSC	NR	NR
Hulahand / Laguat Guava	Eastbound	A/7.3/0.02	A/7.3/0.01
Hubbard/ Locust Grove	Westbound	A/7.3/0.01	A/7.4/0.03
	Northbound	B/11.6/0.26	B/11.4/0.18
	Southbound	B/10.3/0.10	B/12.9/0.36
	AWSC	C/15.6	C/22.9
	Eastbound	C/20.1/NR	B/13.3/NR
Columbia/ Locust Grove	Westbound	B/10.5/NR	D/29.8/NR
	Northbound	B/11.9/NR	B/11.8/NR
	Southbound	B/10.6/NR	C/21.9/NR
	Roundabout	A/8.6	B/13.1
	Eastbound	A/8.3/0.46	B/11.4/0.48
Lake Hazel/ Locust Grove	Westbound	A/8.7/0.43	B/10.6/0.58
	Northbound	B/10.5/0.42	A/6.9/0.22
	Southbound	A/5.5/0.18	C/19.2/0.72
	TWSC	NR	NR
Stroebel/ Hubbard	Eastbound	NR	NR
	Westbound	A/7.4/0.01	A/7.6/0.02
	Northbound	A/9.8/0.15	B/10.1/0.11
	TWSC	NR	NR
Locust Grove/ East Access	Eastbound	A/9.9/0.15	B/10.9/0.12
(South of Rio Vallegas)	Northbound	A/7.4/0.00	A/7.9/0.01
	Southbound	NR	NR

Bold, italics indicates changed condition from existing Worst movement LOS reported at each approach

NR = not reported

TWSC = Two-way stop control AWSC = All-way stop control

All intersections operate favorably under the existing with improved traffic control conditions (roundabout at Lake Hazel Road and Locust Grove Road) and 2025 Site Plus Background traffic conditions. The only location showing signs of nearing capacity under this scenario is the southbound right turn at SH69 and Hubbard Road which operates at a v/c ratio of 0.92.

Turn Lane Analysis

As indicated by the proposed site plan, two new full access approaches are planned for the Ledgestone South development. One is located at the one-half mile point between SH69 and Locust Grove, known as Stroebel Road, and the other is off Locust Grove, south of Mason Creek Ditch. Each site access approach forms a T-intersection with the existing roadway and is proposed to be stop-controlled. As noted in the above stop-controlled analysis both locations are expected to operate under favorable LOS and v/c conditions.

A turn lane analysis was further conducted at each of the locations using the turn lane threshold graphs provided in the ACHD Policy. While neither location appears to warrant a left turn lane, and a right turn lane is not warranted at Stroebel Road; a right turn lane appears to be warranted in the southbound direction at the Locust Grove Road access south of E. Rio Vallegas Street.

SUMMARY OF RESULTS

The study's key findings are summarized below.

Existing Traffic Conditions

- 1. For the existing traffic conditions analyzed with the existing roadway lane configuration, all study area roadway segments meet ACHD's minimum operational thresholds. Therefore, no roadway improvements are needed to mitigate the existing traffic.
- 2. For the existing traffic conditions analyzed with the existing intersection control and lane configuration, all study area intersections meet ACHD's minimum operational thresholds. Therefore, no intersection improvements are needed to mitigate the existing traffic.

2025 Background Traffic Conditions

- 3. There are no planned improvements to the study roadways or intersections by 2025 according to ACHD's current *FYWP* and *CIP*.
- 4. For the 2025 Background traffic conditions analyzed with the existing roadway lane configuration, all study area roadway segments meet ACHD's minimum operational thresholds. Therefore, no roadway improvements are needed to mitigate 2025 Background traffic.
- 5. For the 2025 Background traffic conditions analyzed with the existing intersection control and lane configuration, one of the study area intersections does not meet ACHD's minimum operational thresholds. The intersection of Lake Hazel Road and Locust Grove performs poorly in the PM peak hour under AWSC and is expected to meet at least one traffic signal warrant under 2025 Background conditions. While installation of a traffic signal may be a viable option, ACHD's CIP has programmed a single-lane roundabout at this location. Under this scenario, traffic operations are improved to LOS B or better.

2025 Site Plus Background Traffic Conditions

- 6. This scenario reflects the full buildout of 431 single family dwelling units which is expected to generate 4,069 daily trips, 319 AM peak hour trips, and 427 PM peak hour trips.
- 7. Site traffic is anticipated to have the following general distribution pattern:

SH69 (North) 35%
SH69 (South) 5%
Locust Grove Rd (North) 40%
Locust Grove Rd (South) 5%
Hubbard Rd (East) to Eagle Rd 15%

- 8. For the 2025 Site Plus Background traffic conditions analyzed with the existing roadway lane configuration, all study area roadway segments meet ACHD's minimum operation thresholds. Therefore, no roadway improvements are needed to mitigate the 2025 Site Plus Background traffic.
- 9. For the 2025 Site Plus Background traffic conditions analyzed with the existing (and 2025 Background improvements) intersection control and lane configuration, all study area intersections meet ACHD's minimum operational thresholds. Therefore, no further intersection improvements are needed to mitigate the 2025 Site Plus Background traffic.
- 10. Two full access (T-intersection approaches) at Hubbard Road and S. Stroebel Road, and Locust Grove Road and East Access will serve primary access to the subdivision. With the 2025 Site Plus

Background traffic conditions, stop control and the proposed lane configuration, the critical minor movements at the proposed site access intersections are expected to operate at LOS B or better.

- 11. With the 2025 Site Plus Background traffic conditions, turn lane warrants are satisfied as follows:
 - Locust Grove and E. Access southbound right turn lane

APPENDIX

Ledgestone South Proposed Development

The following summarizes the results of an area of influence model run for a proposed development located southwest of Hubbard and Locust Grove Roads. The proposed development will consist of 431 residential units. The anticipate build out is 2025. See figure 1.

Figure 1

Table 1 provides the existing demographics for TAZ 1181 and the proposed development's demographics used for the area of influence model run.

Table 1

	20	19	2025 with	proposal	20	40
	НН	Jobs	НН	Jobs	НН	Jobs
TAZ 1181	6	0	437	0	6	1
Surrounding TAZs	134	55	456	202	1001	565
<u>Total</u>	<u>140</u>	<u>55</u>	<u>893</u>	<u>202</u>	<u>1007</u>	<u>566</u>

Figure 2: area of influence results for the proposed development

Figures 3 and 4: peak hour results

Figure 5: surrounding TAZs and demographics

Figures 6, 7 and 8: compounded annual growth rates

Figures 9 and 10: Cumulative Impact Analysis

Figure 2: Area of Influence, Peak hour demand contribution to the total peak hour demand

Figure 3: Peak Hour Demand with Proposed Development

_	27		5 252292	_	296	306	60 60 61 82 5	848 45	448	Lak	et Grove Rd e Hazel Rd A47	22 GO 60 68 8 Lai 27 Hazel Rd 532	533		250 Eagle Rd 489	EE B IN Lake Hazel Rd 608	Lake Hazel 608	5595	lake HazeiRd ର 489		S As See See See See See See See See See Se	580
ake H	106 Hazej		315311	311	311	314	318	403	403	Lake	403 E Hazel Rd E	Lal E dazel Rd	453 Lake Haze	el Rd	452 344 Rd	□ 546 SLake Hazel Rd	546 Lake Hazel	529 Rd &	540 38 ≥ Hazel Rd	6205 249	478 476 € ≭	107 109 109 109 109 109 109 109 109 109 109
			_				1782	1244			403 E Hazel Rd ust Grows Rd 2	Lai cu Hazel Rd			Eagle Rd Pb 334	219 Eagle Rd PB		563	360	85 ₹	Five Mile	PN⊕ Z
		Linder Rd 465	211 Linder Rd			12119	119	-			_	1			Eag 3	Eag 2		1 511	312	ے اُ	328	68 83
		-	_			57	1 67	1222			rowe Rd	S rowe Rd			Rd 7	. Rd		Rd 511	Rd 312	S 184	Chapin Ave 3	4
341		350	Columbia 263	Rd C	olumbia Rd 236	238	24121	11891205	427	427	Payor District 1 1989 Columbia Rd 1 427	S IS Columbia Rd	539	541	242 327	요 용 Columbia Ro 442	42	s 470 470	Cloverdale Rd 36 Sign Rd	21 188 141	21 2: Chapin Aved	(5) (5)
38.5	i	367		Rd C	269 olumbia Rd	271	273	286	285	283	283 4 Columbia Rd	— 378 Ĉolumbia Rd	377	376	376	379 Columbia Ro	g 34 g Stewart R	3 e :	279	248 175	148 Columbia Rd	
		Linder Rd 606	353 Linder Rd				1965	1178			452	150		Hubbard 42	23 Eagle Rd 🕏	Stewart Rd Stewart Rd Eagle Rd Hubble Rd	Stewart Rd	Stewart Rd Blave Cookerda	Colomerdale Rd			
233	Hubb 3	SS 605	349 700 Linder Rd	402	480 460	579	582	E Hubbert 303		Hubbard Rd 292	412 412 447	682 Hub	24 42 42 42 42 42 42	S 6 At had a second a	ω I Rd	E 11 Hubbarg Pr. Research	3	Hubbard Rd	102 SPW 402 SP	d	Hubbard Rd 281	
94	Hubb	09 and Rol 곱	235 46 Rd	235	235 235	247	251	92 72 Hubbard	Rd	69 Hubbard Rd	- 10 8		10 bard Pd				10	~	14	d	14 ℃ Hubbard Rd: ⊖	281 Five Mile Rd
		919 545	084 430				1444	928			1181 & 6 70	116				75 Stewart Rd	Stewart Rd	⊠ 418 cCloverdale Rd	t R lubbard R Cloverdale Rd 247		Ž	300 A
		5 545 654 Linder Rd	inder Rd 430				1444	928			104	116						Cloverdale Rd 403	236 Cloverdale Rd			*\
_		5.05	Deer F	3	784 804 7	791	1432	5 198	18	84 184	4 185		Flat Rd 60		160	Deer Flat F of S	15 Slewari Rd	376 24	\			
10 2	240	2403	යි 446 Deer F	at Rd	±33 477 4 293 477 4	95	541	104	8	34 84	83 76		54 Flat Rd		52 84 52 52	© 15 © Deer Flat Rd	_	12				
		357	428	Kay Ave	126 76 Kay Awe		779	493			92	84			ű			Sloverdale Rd 355	218 Doverdale Rd			

Figure 4: Peak Hour Demand without Proposed Development

	348	-	34!		Linde	Linde Linde	Amiy 387	388	Amty R 437	ජ දූල 437	였 501	497 511	513	250 E	F ™.y Ro 2635	Amity Rd 697	Am 6	ty Rei ← 97 [™]	31 7 ^{LL} 378	Amity R 376	d ,∼ 527	Amity Rd \$ 54	385	443	Amity Rd	Amity Ro	d 580
,	312 Amty		312 Amity	Rd	Arer Rd	403 Ede % er	404 Amily F	406 ld	415 Amity R	415 1 8	487 1333	483 456	454	455 Amity Rd	399 123 y Ro	443 Amity Rd	4 Ami	43 🖫 by 🔁 岗	39 📅 483 💆 🖨 Amity Rd	483 Amity R	357 d	252 Amity Rd	231 228	<u>1</u> 55	145 Amty Rd	165 Amity Ro	161
511	Amity Mile Rd					1					ω			463	211			Eagle Rd Pa	Rd PA		664	₹ La 142	၌ Gnanges		_	75	
					489	157				1804	1333			2	2			Eagl	327 Eagle		585	35 ₄ 1	158 ← 52	162	2 🕏	197 2	
809	764 466 PA	<u> </u>			der Rd 486	155 Linder Rd								t Grove 460	205 Locust Grove			Eagle Rd 478	325 gle Rd		609	329	Gnanges <u>&</u> r N	1 Valley St	40	237	
298		e Haze 4 300		(0)	Hazel Rd 332		293	296	306	2800	1326	459	Lak	e Hazeling 460 9	_	Lake H	azel Rd 28	545	Lake Hazel Rd 609	609	5613	96 4 9 1	557	595	595 484 484	85. 560	7
460	Lake 22 St	294 Haze			297 Hazel Rd		296	297	299	303	23	402	Lak	403 E e Hazeliğ	Locust 1	48 Lake H	i azel Rd	Eagle Rd Pbl el <mark>के</mark> । 315 575	, 版 548 Lake Hazel Rd 곱	548	531,	3 548 387	628	½ 483 ₩	Five Mik 89 304	500 ₩ 500	4
00	Mile Rd 257				2	2				119	2			Grove Rd	Grove Rd 76			gle Rd P	203 Eagle Rd P		493	315	64	Þ	. [\$	
460	257				Linder Rd 458	210 Linder Rd		57	102 57		1201			₽ 1	2				[493 4	315 3	~	4		68 221	26 92
		œ	olumbia i	₹4			Coli	umbia R	od.	¥	12			. Grove	Columbi			Eagle Rd 308	₽ Q B D olumbia Rd		452	sidmu 53	<u>ක</u> ි	21 00	64 64 21 la Ro9	ik Gio	
433	294 339		329	34		287		238	238	248		429 4		Columbia Rd 430 ğ	.527		530		□ olumbia Rd 443		426	191	187		151	50	
614	Ş 9	00	354 Jumbla R	350 Id		272	Colu	256 umbia R	258 ld	259 S	294	294 2		Columbia Rd	೮ 370 Columbi		368	368 Eagle	379 Columbia Rd	6	342 02 04	280 Col ⊋bia	246 Rd		148 umble Rd		
	1	-			Linder Rd 599	352 Linder Rd				18	Ξ			403	113			and Rd 8	Hubbard Rd _	_ 3	Cloverdale Ru 385	Coverdate Rd IoO					
614	401 Mile Rd													398	tot	36	ωı	8 ¹⁰)					
.9	401 Ten Mile				335 598	Ounder Rd				1690	1113	Hu	bberd i	Ru 28	Ø	Hubband Rd 34	C. Posta	8 [©]	Shewart Rd	36 Slewan Rd	384	404					
	172		_	211	335		410	487		589	299		288	288		Hubbai 20 td	g] _ °	-	<i>8</i> 5 .	क 96	99 89	Ş Hubbar 27:	3	Hubba 27	ard Rd 73		
080	394		89	89 92	106 643 er Rd	235 147 Rd	235	235	247	251	14		10 bbard F	Tourst 2	11 Locust	10 Hubbard Rd				10	396 Cloverdale	Cloverdal 248	d Rd		4 ard Rd≓	272	
642	386				742 542	16443				1464	930			avaug tsnocc	Locust Grove				73 Stewart Rd	Stewart F	ale Rd	Clowerdale Rd 248			l	12	
\$2	253				542	431				464	930			20	2				2	2	381	23			4		Tenmie
Ĺ					459	968 Deer F	let Bri			_				100	85				nt Rd	# Rd		7				Σ _{Θη}	20
246	262 29				5 90	999 75	4 7	88804			Š 186			73 174=	84	Deer Flat Rd 147		147	Deer Par \$.88	75 Stewent Rd	35 ²	227					To Creek
310 4	4	3 200	9 225	<u>8</u> 216 or	23 <u>7</u>	Deer F		£2467	483 p	529	90	70	7	0 69	77	54 Deer Flat Rol		Eagle 51	02 15 Deer Flat Rd		12 98 9	8 R G					

Figure 5: Surrounding Area TAZs

Figure 6: 2019 to 2025 Compounded Annual Growth Rate

			r to	2025	Pe	eak H	our	Con	npou	ınded	l Ann	ual (Growt	th Rate:	S												
	5/201	9																	_								
Ten Mile	Amity Rd 7.9	Amity 7.		Ym Am Linder Rd	2,		inity Rd		Amity R		5.8 5	.7 6.2	6.2	Amity Rd 6.3	Amty 3	Rd Amit	ty Rd	Amity Rd =	Amity Rd 1.5	Amity 1.							
Ten Mile Rd										0.9 6.0								Eagle Rd DA elge3			12.1 9.11		0,4			772	
PH Wile Rd	Lake Ha	.7		Hazel Ro	9	17 16.	.9 1	16.9	16.3	0.9 6.0	10).1		Hazel Rd 102		Hazel Rdl 8.4	Lake Hazel 8.4	8.7	15.5	15.5	14.7 9'81 15.9	10.5	94	10.2	102	11.4	Lake Hazel R 115
0.9 Ten Mile Rd		26.5		Linder Rd	60			73	317.5	190.5				Locust Grove Rd				18.7 £6) Eagle Rd P3 elősa			6.1 6.4 2.8	164	2 13.8 2		Five Mile Ro 4 3.7	4.9	8.1
5.7	7	Columbia (E 8.9		15.1		nbla Ri	13.5	2.1 2.2 2.2	14.8	14.8 14		14.9 Pid and united to the part of the par	Colu	mbla Rd	11.3	PA #86 	Columbia Ro		8.7 \$6 4.0 verdale Rd		ŽE 3.2 0.3	Colu	0.6 E		Blgwood 8.1
Ten Mile Rd				Linder Rd	23					34				992 25.8			1	Hubbard Rd	Hubbard Rd On	2.3	Cloverdale Rd						
1.8	6.6	5.4	5.4 4.	25 Jinder Rd	2.3	7.1	7.1 6	3 6	5.1	5.2	64.1		Hubbard F 67.3	672 84 28.4 27.4		Hubba 6	19 84 d 64		Slewari Rd 10.6		EZ Hubbard Rd	Hubbard		Hubbs 2.			
2.8 £.2 3.1					36 4				_	4.3 6.4				Locusi Grove Rd			-		11.7 Stewart Rd		15.5 Cloverdale Rd Clov				2.9	\F.5	
4 pa 1	4.8 4.4	4.7 4.8	3.3	:	4.1 5.2 4	Deer Flat		7 1.1	15	4.2	20	20.2	20.2	13.2 E:E 20.3		Deer Fi		17.4	Slewari Rd 12.9		16.7 15.5 loverdale Rd						1.5 Pook F.
4.2 2.4	10100441			:	1.5 1.7					4.8				17.6				Eagle Rd	12.9 Grow	th Rate)	oject (Pro	gramn	ned in th	e TIP or	Funde	d in CIM 2.0)

Figure 7: 2025 to 2030 Compounded Annual Growth Rate

Pa P		nity Rd 4.6 6.15.9
Ten Mile Rd	Amity Rd 55: 90 47.7	
Pa P	7.3 27 7.3 27	7.
Pa P	ω	7
Pa P	ω 61	
6.85 9 42 12 12 12 12 12 12 12 12 12 12 12 12 12	1 3.1 2	- 00
	Mile Rd	2.7 32
1.5	9:0 1.4	.5 8.3
0.2	0.2	Bigwood 8.3
	Columbia R €	
1.5 Frenchilder Rd Hinder		
8 Rd		
3.9 4.1 3.5 3.5 2.8 Hubbard Rd (0) Hubbard Rd (13.9 13.7 5.4 Hubbard Rd (13.9 13.7 5.4	ubbaid Rd 5.4	
	ch in	_
2.7 1.141 Sewart Rd Cloverdale Rd Cloverdale Rd Cloverdale Rd S. 2.1 1.141 Sewart Rd Cloverdale Rd C	0,	\$ \$
3.9		Tonnillo Chaox,
t R' to Deer Flat Rd Deer Flat		
97 98 43 97 98 19.5 98 44 43 97 8 28 19.5 19.5 19.5 19.5 19.5 19.5 Included Roadway Project (Programmed in	n the TIP or Fun	nded in CIM 2 0)

Figure 8: 2030 to 2040 Compounded Annual Growth Rate

4.6	ka Hazejj		3.9 6°E 3.9 Linder Rd						3 2.3 2				1.1	1.1	0.3 0.2	0.2	0.3	0.2	0.2 1.5	12	1.25-2.0		1.61.8
νο Lake	ka Hazeli		6.E 3.9				ü				3.5			Eagle Rd			12			1.5	Amity Rd 1.3:6		1.01.0
4.6	ka Hazejj						د ن				6.3			2.7	İ		£.2 2.8	5.2	8.3 °C	8.4	3 4 8	2.,	
	2.6	ld Lake	PB 90 op der Rd 2.6	2.4 2.	4 2.5	2.4	1.1	1.9 1.	_	La ke Haze 2.1				2.8 Eagle Rd			3 3.1 8		Valley St 38.4		3.5		
8		4 0		2.7 2.			6.0	1.9 1.	9	2.1	Rd Locust Grove	1.6	1.7	1.7 Eagle Rd Pd 95e3			<u>د</u> ن	0.5	0.6 1 10	0.7	6.8 9.8 0.7 74	1.1	1.1
3.1			Linder Rd		-	ث	1 60				R						3.8	40,9	2.9		ق ق		7.3
ო 2 1.5		ibia Rd .4 1	1.5 1.5	3.7	Columbia 4.1		0.9	3.1 3	3.1 3.1	Co lu _m	Lo L'i Brandia 3.5	Co lumbii 1.7		1.7 1.7			ග ග් 0.4	Columbi:	a Rd	Colu	0.1 ເຊິ່ mbia R ເຊິ່ 2.9 ເຄ)	ω Bigw
1.7			Linder Rd				r.				7. ° 3.4			## 12 12 14 Hubbard Rd	Hubbard R: 0	10.6°	Cloverdale Rd 2.5						
1.7			inder Rd				ر ق				3.5		6.7	0 80	Stewart Rd		2.5						
8 7.1	1 6.5	6.5	5.1	2.8	2.8 2	.4 2.1		3.8		3.8		8.7	Hubbard Rd 8.8		Ster	12.8	ین 12.8		ard Rd	Hubba 6			
2.4			1.2 E'1 1.3 Linder Rd				1.3 E.				Locust Grove Rd 6.3				9.9 Stewart Rd		3.7 Cloverdale Rd				6	5.9	<i>></i>
8. 5.4 4.	2 1.9	2 1.8	2.5 1.5	Deer Flat 2.1		2 2.3	2 E.				ნ. წ. 5.4 [©]		eerFlatRd		wart Rd 10		3.9 4						Tennile C

Cumulative Impact Results: Ledgestone North (253 units entitled) and Ledgestone South (431 units proposed)

Figure 9: Cumulative Area of Influence, Peak hour demand contribution to the total peak hour demand

Figure 10: PM Peak Hour Demand with Entitled and Proposed

	341	3	41	Linde	579 5		383	Amty Re 432	1 1 ≥ 432	<u>-</u> 506	502 515	517	524 원	F ™.y Rd 645	Amity Rd 700	Amt	tyRel ← DO [™]	315 Amity Rd	Amity R	525	Amity Rd	% 393	449	Amity Rd	Amity Rd	588
523	310 Amty R 260 Rd		10 yRd	Arer Rd	403 Ender	40s Amily	406 Rd	415 Amty Ro	415 1 8 43	489 1357	485 457	455	458 Amity Rd	407 125 y Rd	452 Amity Rd	4: Amt	52 [F] by Pd #4 R2	39 중 481 중 Amity Rd 공	481 Amity R	355 d	į́257 AmtyRd	237 257 96	1354	145 Amity Rd	165 Amity Rd	162
	- R			508	166				1843	1357			Rd 482	230 Rd			Eagle Rd 557	337 Eagle Rd		029 601	824 La (151 351	9nange st 166 ₩ 43	₹ ₁₄₆	21 75	261	
524 84		Hazel Rd 293	Lak	환 항공 e Hazel Rd 325	164 Linder pd	292	295	305	£1838	1351	443	Lak	Pazell Grove	225 Locust Grove B		azel Rd 37	PS Eagle Rd 496	문 용용 Lake Hazel Rd 609	609	6085	120 320 333 333 339	Valley 12 Stange St	1 Valley St	57	241 ZEZ 580	
63 473	_	309 ఏ HazelRd	gg Lake	312 e Hazel Rd		318	318	321	32.5 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1255	403		404 G Hazellig	Locust	4	54 bzel Rd	Eagle Rd Pal St. 350 030	도 등 542 Lake Hazel Rd 공	542	525,	3534 382	554 614	599 22 470	599° 470 470 SOE	702 499 Five Mile 668	43
				Linder Rd 469	211 Linder Rd		L ₅₇	102	119				Grove Rd 1 2 PB	Grove Rd P8			Eagle Rd 350	230 Eagle Rd		579 519	310		4 12	- 1	568	27
446 473	259	Columbia				Co	olumbia R	d	1 87.7824	1233			Columbia Rd	Columbi 50 60 60 60 60 60 60 60 60 60 60 60 60 60	a Rd		Eagle Rd 343	D Solumbia Rd		478 51	294 37	€ Rd	.64 21 Colu	64 - 64 21) la Ros	£ ²²¹	92
	3507	323		39 349	261 286		238	239			427 4		427 <u>Ğ</u>	.544	545	_	548	438		420	193	188	142	152	51	
622	400 Ten Mile	Columbia		Linder Rd 609	352 Linder Rd	Co	olumbia R	278 d	280 280	281	280 2		277 L/4 Columbia Rd 475	© 381 Columbi	380 a Rd	Hubba	379 Engle 7 ard Rd	376 Columbia Rd 4 96 Hubbard Rd 4	6 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Cloverdate Ru 8	Col Sylia Col Balana Sylia	246 ·		148 Imble Rol		
622	991 Ten Mile Rd	205	205	Kinder Rd 608	668 349 Ginder Rd	399	458	576	06.Z.1 578	299		bberd R 288	372 372	61149 158	Hubban Rd 43	8 H B B B B B B B B B B B B B B B B B B	8 [©] ard Rd	Hupperd & Of	601 Slewari Rd	416 416	QHubban 286		Hubba 28			
644 289	395 L8E	91	91 9	648 959 1 1 er Rd	236 er Rd 629 4	236	235	248	1433 252	105		102 Dobard R	1181 ⁵⁰	11	10 Hubbard Rd			76 Stewart	10 Stewart	430 Cloverdale Rd	Cloverdale Rd		1- Hubba		286	
1.2 d5	253			546 915	29 624				1433	927			901 106	133				2	2	415	237			Ĉ.		Tennile
247		391 431		304 458	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Flat Rd 53	782803		1454	통 203	191	19	90		Deer Flat Rol 166		168	Deer Far®s. ₹ 72 55	75 Stewart Rd	38 24	227				∑ _{Θηη}	The Creek A
314 /	183 179 	215 230	<u>ફ</u> 222 다	24 <u>2</u>	현 44 Deerl	18 Flat Rd ହ	67482	501 g	547 2	111 &	92	90	2 91 23	89 [54 DeerFatRo		152 88 48 51	02 15 Speer Flat Rd Ш		12 2 2 9	т В В					

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

Page No : 1

Groups Printed- General Traffic

		Mer	idian	Rand			Huk	bard	_	intea- C				an Ro	ad)		Huk	bard	Road		
			om No					rom E				•	om Sc		auj			rom W			
Start																					
Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	8	52	0	0	60	1	0	3	0	4	0	229	3	0	232	1	6	36	0	43	339
07:15 AM	5	72	5	0	82	2	1	2	0	5	1	254	2	0	257	2	8	46	0	56	400
07:30 AM	10	75	5	0	90	4	1	0	0	5	1	226	2	0	229	5	7	39	0	51	375
07:45 AM	19	125	4	0	148	3	2	2	0	7	2	165	2	0	169	6	2	12	1	21	345
Total	42	324	14	0	380	10	4	7	0	21	4	874	9	0	887	14	23	133	1	171	1459
08:00 AM	7	89	5	0	101	2	0	1	0	3	1	184	4	0	189	5	0	28	0	33	326
08:15 AM	10	70	3	0	83	1	0	2	0	3	2	176	3	0	181	4	1	26	1	32	299
08:30 AM	17	85	5	1	108	8	2	4	0	14	1	193	4	0	198	5	4	29	0	38	358
08:45 AM	13	81	2	0	96	3	0	0	0	3	2	143	4	0	149	4	1_	30	0	35	283
Total	47	325	15	1	388	14	2	7	0	23	6	696	15	0	717	18	6	113	1	138	1266
04:00 PM	46	182	6	0	234	3	4	1	0	8	4	115	6	0	125	8	1	13	0	22	389
04:00 PM	70	239	3	0	312	1	1	1	0	3	1	122	6	0	129	8	0	10	0	18	462
04:30 PM	60	209	4	0	273	8	4	2	0	14	1	117	10	0	128	9	1	8	0	18	433
04:45 PM	59	227	4	0	290	8	3	4	0	15	1	119	8	0	128	7	1	12	0	20	453
Total	235	857	17	0	1109	20	12	 8	0	40	7	473	30	0	510	32	3	43	0	78	1737
Total	200	007		Ū	1100			Ü	Ü	70	•	470	00	O	0.0	02	Ü	-10	Ü	,,	1707
05:00 PM	70	251	4	0	325	9	2	3	0	14	4	117	6	0	127	9	4	18	0	31	497
05:15 PM	71	266	4	0	341	12	3	2	0	17	3	134	9	0	146	7	2	17	0	26	530
05:30 PM	65	249	2	0	316	6	3	2	0	11	0	126	9	0	135	7	1	14	0	22	484
05:45 PM	67	281	5	0	353	2	1	2	0	5	1	108	5	0	114	5	2	18	0	25	497
Total	273	1047	15	0	1335	29	9	9	0	47	8	485	29	0	522	28	9	67	0	104	2008
Grand Total	597	2553	61	1	3212	73	27	31	0	131	25	2528	83	0	2636	92	41	356	2	491	6470
Apprch %	18.6	79.5	1.9	0		55.7	20.6	23.7	0		0.9	95.9	3.1	0		18.7	8.4	72.5	0.4		
Total %	9.2	39.5	0.9	0	49.6	1.1	0.4	0.5	0	2	0.4	39.1	1.3	0	40.7	1.4	0.6	5.5	0	7.6	

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000

Start Date : 8/7/2018

			idian l om No					bard I			S	H-69 (I Fr	Meridi om Sc		ad)			bard l			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s From	07:00	AM to	11:45	AM - P	eak 1 c	of 1													-
Peak Hour fo	r Entire	e Inter	section	n Begir	ns at 07:	00 AM															
07:00 AM	8	52	0	Ō	60	1	0	3	0	4	0	229	3	0	232	1	6	36	0	43	339
07:15 AM	5	72	5	0	82	2	1	2	0	5	1	254	2	0	257	2	8	46	0	56	400
07:30 AM	10	75	5	0	90	4	1	0	0	5	1	226	2	0	229	5	7	39	0	51	375
07:45 AM	19	125	4	0	148	3	2	2	0	7	2	165	2	0	169	6	2	12	1	21	345
Total Volume	42	324	14	0	380	10	4	7	0	21	4	874	9	0	887	14	23	133	1	171	1459
% App. Total	11.1	85.3	3.7	0		47.6	19	33.3	0		0.5	98.5	1	0		8.2	13.5	77.8	0.6		
PHF	.553	.648	.700	.000	.642	.625	.500	.583	.000	.750	.500	.860	.750	.000	.863	.583	.719	.723	.250	.763	.912

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

+15 mins.

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

.763

Page No : 4

			idian om No					bard rom E			S	•	Meridi om So	an Roa	ad)			bard om W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	07:00	AM to	11:45	AM - P	eak 1 d	of 1								•					
Peak Hour fo	or Each	Appro	ach B	egins a	at:																

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000

Start Date: 8/7/2018 Page No: 5

			idian om No					bard l			S	•	Meridi om Sc	an Ro	ad)			bard l			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	12:00	PM to	05:45 I	PM - Po	eak 1 c	of 1													
Peak Hour fo	r Entir	e Inter	section	n Begir	ns at 05:	00 PM															
05:00 PM	70	251	4	Ō	325	9	2	3	0	14	4	117	6	0	127	9	4	18	0	31	497
05:15 PM	71	266	4	0	341	12	3	2	0	17	3	134	9	0	146	7	2	17	0	26	530
05:30 PM	65	249	2	0	316	6	3	2	0	11	0	126	9	0	135	7	1	14	0	22	484
05:45 PM	67	281	5	0	353	2	1_	2	0	5	1	108	5	0	114	5	2	18	0	25	497
Total Volume	273	1047	15	0	1335	29	9	9	0	47	8	485	29	0	522	28	9	67	0	104	2008
% App. Total	20.4	78.4	1.1	0		61.7	19.1	19.1	0		1.5	92.9	5.6	0		26.9	8.7	64.4	0		
PHF	.961	.931	.750	.000	.945	.604	.750	.750	.000	.691	.500	.905	.806	.000	.894	.778	.563	.931	.000	.839	.947

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000

Start Date : 8/7/2018

			idian om No					bard rom E			S	•	Meridi om Sc	an Roa outh	ad)			bard rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Tot
Peak Hour A	nalysis	Fron	12:00	PM to	05:45	PM - Pe	eak 1 c	of 1													
Peak Hour fo	r Each	Appro	oach B	egins a	at:																_
	05:00 PM			_		04:30 PM					04:45 PN	1				05:00 PN	4				
+0 mins.	70	251	4	0	325	8	4	2	0	14	1	119	8	0	128	9	4	18	0	31	
+15 mins.	71	266	4	0	341	8	3	4	0	15	4	117	6	0	127	7	2	17	0	26	
+30 mins.	65	249	2	0	316	9	2	3	0	14	3	134	9	0	146	7	1	14	0	22	
+45 mins.	67	281	5	0	353	12	3	2	0	17	0	126	9	0	135	5	2	18_	0	25	
Total Volume	273	1047	15	0	1335	37	12	11	0	60	8	496	32	0	536	28	9	67	0	104	
% App. Total	20.4	78.4	1.1	0		61.7	20	18.3	0		1.5	92.5	6	0		26.9	8.7	64.4	0		
PHF	.961	.931	.750	.000	.945	.771	.750	.688	.000	.882	.500	.925	.889	.000	.918	.778	.563	.931	.000	.839]
											15 05:00 F	PM 0 eds									

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Meridian Rd / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Meridian Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

Page No : 7

Image 1

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign

File Name: Locust Grove Rd & Deer Flat Rd

Site Code : 00000000

Start Date : 9/10/2019

Page No : 1

Crouns	Printed-	Ceneral	Traffic
Groups	r rintea-	General	Tranic

	1	Locust Fr	Grove om No					r Flat l rom E]		Grove om So	e Road	l			r Flat I			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	3	1	1	0	5	2	7	0	0	9	2	4	1	0	7	0	39	8	0	47	68
07:15 AM	5	2	1	0	8	1	19	0	0	20	0	4	1	0	5	1	38	3	0	42	75
07:30 AM	4	1	1	0	6	1	15	0	0	16	1	4	0	0	5	4	32	8	0	44	71
07:45 AM	1	1	1	0	3	0	4	0	0	4	0	1	1	0	2	1	29	9	0	39	48
Total	13	5	4	0	22	4	45	0	0	49	3	13	3	0	19	6	138	28	0	172	262
08:00 AM	2	2	0	0	4	1	9	0	0	10	1	7	1	0	9	0	24	6	0	30	53
08:15 AM	3	2	1	0	6	0	7	2	0	9	0	4	1	0	5	0	12	2	0	14	34
08:30 AM	5	1	2	0	8	3	9	0	0	12	1	1	0	0	2	1	14	4	0	19	41
08:45 AM	3	2	0	0	5	0	11	1_	0	12	1	1	0	0	2	0	15	7_	0	22	41_
Total	13	7	3	0	23	4	36	3	0	43	3	13	2	0	18	1	65	19	0	85	169
	ı					ı					ı										ı
04:00 PM	9	3	0	0	12	2	26	2	0	30	0	4	1	0	5	2	18	2	0	22	69
04:15 PM	12	9	3	0	24	1	29	1	0	31	0	3	1	0	4	0	12	4	0	16	75
04:30 PM	16	6	0	0	22	1	34	0	0	35	0	0	0	0	0	0	16	2	0	18	75
04:45 PM	12	8	0	0	20	2	42		0	45	0	I	0	0	1 10	0	- 7	2	0	9	75
Total	49	26	3	0	78	6	131	4	0	141	0	8	2	0	10	2	53	10	0	65	294
05:00 PM	15	6	1	0	22	2	49	0	0	51	0	1	0	0	1	1	13	5	0	19	93
05:15 PM	15	12	1	0	28	1	41	0	0	42	0	3	0	0	3	0	11	3	0	14	87
05:30 PM	23	7	1	0	31	1	52	0	0	53	0	1	0	0	1	0	8	9	1	18	103
05:45 PM	13	5	2	0	20	0	41	1_	0	42	1	2	0	0	3	0	8	6	0	14	79
Total	66	30	5	0	101	4	183	1	0	188	1	7	0	0	8	1	40	23	1	65	362
Grand Total	141	68	15	0	224	18	395	8	0	421	7	41	7	0	55	10	296	80	1	387	1087
Apprch %	62.9	30.4	6.7	0	20.6	4.3	93.8	1.9	0	207	12.7	74.5	12.7	0	E 1	2.6	76.5	20.7	0.3	25.6	
Total %	13	6.3	1.4	0	20.6	1.7	36.3	0.7	0	38.7	0.6	3.8	0.6	0	5.1	0.9	27.2	7.4	0.1	35.6	

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Deer Flat Rd

Site Code : 00000000 Start Date : 9/10/2019

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Deer Flat Rd

Site Code : 00000000

Start Date : 9/10/2019 Page No : 3

]	Locust Fr	Grove om No		ĺ			Flat I]		Grove om So	e Road uth	l			r Flat I			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	07:00	AM to	11:45 A	M - P	eak 1 d	of 1													
Peak Hour fo	r Entir	e Inters	section	Begin	s at 07:0	00 AM															
07:00 AM	3	1	1	0	5	2	7	0	0	9	2	4	1	0	7	0	39	8	0	47	68
07:15 AM	5	2	1	0	8	1	19	0	0	20	0	4	1	0	5	1	38	3	0	42	75
07:30 AM	4	1	1	0	6	1	15	0	0	16	1	4	0	0	5	4	32	8	0	44	71
07:45 AM	1	1	1	0	3	0	4	0	0	4	0	1	1	0	2	1	29	9	0	39	48
Total Volume	13	5	4	0	22	4	45	0	0	49	3	13	3	0	19	6	138	28	0	172	262
% App. Total	59.1	22.7	18.2	0		8.2	91.8	0	0		15.8	68.4	15.8	0		3.5	80.2	16.3	0		
PHF	.650	.625	1.00	.000	.688	.500	.592	.000	.000	.613	.375	.813	.750	.000	.679	.375	.885	.778	.000	.915	.873

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Deer Flat Rd

Site Code : 00000000 Start Date : 9/10/2019

	I	Locust Fr	Grove om No		l			· Flat l rom E]		Grove om So					Flat I			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int.
eak Hour A	nalysis	From	07:00	AM to	11:45 A	M - P	eak 1 o	f 1													
eak Hour for	Each	Appro	ach Be	gins at	t:																_
	08:00 AM					07:15 AM					07:15 AM					07:00 AM					
+0 mins.	2	2	0	0	4	1	19	0	0	20	0	4	1	0	5	0	39	8	0	47	
+15 mins.	3	2	1	0	6	1	15	0	0	16	1	4	0	0	5	1	38	3	0	42	
+30 mins.	5	1	2	0	8	0	4	0	0	4	0	1	1	0	2	4	32	8	0	44	
+45 mins.	3	2	0	0	5	1	9	0	0	10	1	7	1	0	9	1	29	9	0	39	
Total Volume	13	7	3	0	23	3	47	0	0	50	2	16	3	0	21	6	138	28	0	172]
% App. Total	56.5	30.4	13	0		6	94	0	0		9.5	76.2	14.3	0		3.5	80.2	16.3	0		

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Deer Flat Rd

Site Code : 00000000 Start Date : 9/10/2019

	Locust Grove Road				Deer Flat Road From East				Locust Grove Road From South					Deer Flat Road From West							
	From North																				
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	12:00	PM to	05:45 P	PM - Pe	eak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	Begin	s at 05:0	00 PM															
05:00 PM	15	6	1	0	22	2	49	0	0	51	0	1	0	0	1	1	13	5	0	19	93
05:15 PM	15	12	1	0	28	1	41	0	0	42	0	3	0	0	3	0	11	3	0	14	87
05:30 PM	23	7	1	0	31	1	52	0	0	53	0	1	0	0	1	0	8	9	1	18	103
05:45 PM	13	5	2	0	20	0	41	1	0	42	1	2	0	0	3	0	8	6	0	14	79
Total Volume	66	30	5	0	101	4	183	1	0	188	1	7	0	0	8	1	40	23	1	65	362
% App. Total	65.3	29.7	5	0		2.1	97.3	0.5	0		12.5	87.5	0	0		1.5	61.5	35.4	1.5		
DLIE	717	625	625	000	215	500	980	250	000	997	250	592	000	000	667	250	760	630	250	955	870

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Start

Time

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Deer Flat Rd

Thru Left Peds

Int. Total

Site Code : 00000000

Start Date : 9/10/2019 Page No : 6

Right

Locust Grove Road Deer Flat Road Locust Grove Road Deer Flat Road From North From East From South From West				
From North From East From South From West	Locust Grove Road	Deer Flat Road	Locust Grove Road	Deer Flat Road
	From North	From East	From South	From West

Right

Thru Left Peds

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1

Right

Thru Left Peds

Peak Hour for Each Approach Begins at:																				
	04:45 PM					04:45 PM					04:00 PM					04:00 PM				
+0 mins.	12	8	0	0	20	2	42	1	0	45	0	4	1	0	5	2	18	2	0	22
+15 mins.	15	6	1	0	22	2	49	0	0	51	0	3	1	0	4	0	12	4	0	16
+30 mins.	15	12	1	0	28	1	41	0	0	42	0	0	0	0	0	0	16	2	0	18
+45 mins.	23	7	1	0	31	1	52	0	0	53	0	1	0	0	1	0	7	2	0	9
Total Volume	65	33	3	0	101	6	184	1	0	191	0	8	2	0	10	2	53	10	0	65
% App. Total	64.4	32.7	3	0		3.1	96.3	0.5	0		0	80	20	0		3.1	81.5	15.4	0	
PHF	.707	.688	.750	.000	.815	.750	.885	.250	.000	.901	.000	.500	.500	.000	.500	.250	.736	.625	.000	.739

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Deer Flat

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Deer Flat Rd

Site Code : 00000000 Start Date : 9/10/2019

Page No : 7

Image 1

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

Page No : 1

Groups Printed- General Traffic

Start Time Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru Left 07:00 AM 0 1 0 0 3 0 0 3 0 10 07:15 AM 0 1 1 0 2 0 3 0 0 3 1 14 07:30 AM 4 5 0 0 9 0 2 0 0 2 0 8	South eft Peds App. Total 0 0 10 0 0 15 0 0 8 0 0 6 0 0 39	0 1 1 2	Thru 3 6 5 3	Left 4 4 3	Peds 0 0 0	App. Total	Int. Total 21 31
O7:00 AM 0 1 0 3 0 0 3 0 10 07:15 AM 0 1 1 0 2 0 3 0 0 3 1 14 07:30 AM 4 5 0 0 9 0 2 0 0 2 0 8	0 0 10 0 0 15 0 0 8 0 0 6	0 1 1 2	3 6 5 3	4 4 3	0	7	21
07:15 AM	0 0 15 0 0 8 0 0 6	1 1 2	6 5 3	4 3	0	11	
07:30 AM 4 5 0 0 9 0 2 0 0 2 0 8	0 0 8 0 0 6	-	5 3	3	-		24
	0 0 6	-	3	_	0		ગ
07:45 AM 1		-		_	•	9	28
	0 0 39	4		3	0	8	22
Total 5 11 1 0 17 2 9 0 0 11 1 38			17	14	0	35	102
	0 0 5	2	1	3	0	6	19
	0 0 10	0	1	1	0	2	21
	2 0 9	0	5	1	0	6	26
	0 0 3	0	1	0	0	1	9
Total 4 18 1 0 23 1 8 1 0 10 2 23	2 0 27	2	8	5	0	15	75
	0 0 3	0	2	0	0	2	30
	0 0 10	0	2	5	0	7	37
	0 0 4	1	0	1	0	2	24
01.101.111 0 10 0 0 20 0 0 0 0 0 0	1 0 3	0	1_	2	0	3	32
Total 9 59 0 0 68 0 15 6 0 21 3 16	1 0 20	1	5	8	0	14	123
	2 0 10	0	1	1	0	2	31
	0 0 2	1	3	1	0	5	27
	0 0 5	1	1	0	0	2	34
	0 0 4	2	4	0	0	6	34
Total 7 64 0 0 71 0 11 8 0 19 3 16	2 0 21	4	9	2	0	15	126
Grand Total 25 152 2 0 179 3 43 15 0 61 9 93 Apprch % 14 84.9 1.1 0 4.9 70.5 24.6 0 8.4 86.9 4.	5 0 107 .7 0	11 13.9	39 49.4	29 36.7	0	79	426
	.2 0 25.1	2.6	9.2	6.8	0	18.5	

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

			t Grov	e Roa orth	ıd			bard l				Locus Fr	t Grov		d			bard l			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	07:00	AM to	11:45	AM - P	eak 1 d	of 1													
Peak Hour fo	r Entir	e Inter	section	n Begir	ns at 07:	00 AM															
07:00 AM	0	1	0	Ō	1	0	3	0	0	3	0	10	0	0	10	0	3	4	0	7	21
07:15 AM	0	1	1	0	2	0	3	0	0	3	1	14	0	0	15	1	6	4	0	11	31
07:30 AM	4	5	0	0	9	0	2	0	0	2	0	8	0	0	8	1	5	3	0	9	28
07:45 AM	1	4	0	0	5	2	1	0	0	3	0	6	0	0	6	2	3	3	0	8	22
Total Volume	5	11	1	0	17	2	9	0	0	11	1	38	0	0	39	4	17	14	0	35	102
% App. Total	29.4	64.7	5.9	0		18.2	81.8	0	0		2.6	97.4	0	0		11.4	48.6	40	0		
PHF	.313	.550	.250	.000	.472	.250	.750	.000	.000	.917	.250	.679	.000	.000	.650	.500	.708	.875	.000	.795	.823

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

			t Grov	/e Roa orth	d			bard rom E					t Grov	e Roa outh	d			bard l rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Tota
Peak Hour A	nalysi	s Fron	07:00	AM to	11:45	AM - P	eak 1 d	of 1													
Peak Hour fo	r Each	Appro	oach B	egins a	at:																_
	07:30 AN	4				07:45 AN	1				07:00 AM					07:00 AM	1				
+0 mins.	4	5	0	0	9	2	1	0	0	3	0	10	0	0	10	0	3	4	0	7	
+15 mins.	1	4	0	0	5	1	3	0	0	4	1	14	0	0	15	1	6	4	0	11	
+30 mins.	0	4	0	0	4	0	2	0	0	2	0	8	0	0	8	1	5	3	0	9	
+45 mins.	0	6	1	0	7	0	3	1	0	4	0	6	0	0	6	2	3	3	0	8	
Total Volume	5	19	1	0	25	3	9	1	0	13	1	38	0	0	39	4	17	14	0	35	1
% App. Total	20	76	4	0		23.1	69.2	7.7	0		2.6	97.4	0	0		11.4	48.6	40	0		
DLIE	242	702	250	000	604	275	750	250	000	042	250	670	000	000	CEO	E00	700	075	000	705	1

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

			t Grov		ıd			bard l					t Grov	e Roa	d			bard l			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	12:00	PM to	05:45 F	PM - P	eak 1 c	of 1													
Peak Hour fo	r Entire	e Inter	section	n Begir	ns at 05:	00 PM															
05:00 PM	1	16	0	Ō	17	0	1	1	0	2	1	7	2	0	10	0	1	1	0	2	31
05:15 PM	1	14	0	0	15	0	2	3	0	5	0	2	0	0	2	1	3	1	0	5	27
05:30 PM	2	19	0	0	21	0	5	1	0	6	1	4	0	0	5	1	1	0	0	2	34
05:45 PM	3	15	0	0	18	0	3	3	0	6	1	3	0	0	4	2	4	0	0	6	34
Total Volume	7	64	0	0	71	0	11	8	0	19	3	16	2	0	21	4	9	2	0	15	126
% App. Total	9.9	90.1	0	0		0	57.9	42.1	0		14.3	76.2	9.5	0		26.7	60	13.3	0		
PHF	.583	.842	.000	.000	.845	.000	.550	.667	.000	.792	.750	.571	.250	.000	.525	.500	.563	.500	.000	.625	.926

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

			st Grov		ıd			bard rom E					t Grov	e Roa	d			bard l			
Start Time	Right	Thru	Ī	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Tot
Peak Hour A	nalysi	s Fron	n 12:00	PM to	05:45 I	PM - Pe	eak 1 c	of 1													
Peak Hour fo	r Each	Appro	oach B	egins a	at:																_
	04:45 PN	1		_		04:00 PM	1				04:15 PM					05:00 PM					
+0 mins.	5	15	0	0	20	0	3	4	0	7	1	9	0	0	10	0	1	1	0	2	
+15 mins.	1	16	0	0	17	0	1	1	0	2	1	3	0	0	4	1	3	1	0	5	
+30 mins.	1	14	0	0	15	0	5	1	0	6	0	2	1	0	3	1	1	0	0	2	
+45 mins.	2	19	0	0	21	0	6	0	0	6	1	7	2	0	10	2	4	0	0	6	
Total Volume	9	64	0	0	73	0	15	6	0	21	3	21	3	0	27	4	9	2	0	15	
% App. Total	12.3	87.7	0	0		0	71.4	28.6	0		11.1	77.8	11.1	0		26.7	60	13.3	0		
DUE	450	0.42	000	000	960	000	625	275	000	750	750	E02	275	000	675	500	E62	FOO	000	625	1

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Hubbard Rd

City, State: Ada County, Idaho

Control: Stop Sign

File Name: Locust Grove Rd & Hubbard Rd

Site Code : 00000000 Start Date : 8/7/2018

Page No : 7

Image 1

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002 File Name: Locust Grove Rd & Columbia Rd

Intersection: Locust Grove / Columbia Rd
City, State: Ada County, Idaho
Site Code : 00000000
Start Date : 8/7/2018

Control: All Stop Page No : 1

Groups Printed- General Traffic

		Locus	t Grov	e Roa	d		Huk	bard	_	intea- (/e Roa	d		Colu	ımbia	Road		1
		Fr	om No	orth			F	rom E	ast			Fr	om Sc	outh			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	1	1	2	0	4	1	12	0	0	13	2	11	0	0	13	0	41	15	0	56	86
07:15 AM	4	1	6	0	11	3	19	1	0	23	0	17	2	0	19	1	51	20	0	72	125
07:30 AM	8	7	7	0	22	4	21	2	0	27	3	9	0	0	12	3	69	14	0	86	147
07:45 AM	3	7	3	0	13	7	19	1	0	27	2	4	2	0	8	0	50	12	0	62	110
Total	16	16	18	0	50	15	71	4	0	90	7	41	4	0	52	4	211	61	0	276	468
08:00 AM	4	2	2	0	8	1	12	1	0	14	0	11	1	0	12	0	33	6	0	39	73
08:15 AM	1	3	1	0	5	5	10	0	0	15	4	10	1	0	15	2	19	8	0	29	64
08:30 AM	1	1	4	0	6	3	20	5	0	28	1	7	0	0	8	2	29	4	0	35	77
08:45 AM	0	2	3	0	5	5	11	1_	0	17	1	5	1_	0	7	2	25	4	0	31	60
Total	6	8	10	0	24	14	53	7	0	74	6	33	3	0	42	6	106	22	0	134	274
04:00 PM	6	14	6	0	26	7	41	2	0	50	1	0	1	0	2	2	13	0	0	15	93
04:15 PM	4	15	2	0	21	4	39	2	0	45	1	6	4	0	11	1	21	1	0	23	100
04:30 PM	12	12	5	0	29	1	44	2	0	47	0	8	0	0	8	1	18	2	0	21	105
04:45 PM	20	15	4	0	39	6	64	4	0	74	1	2	0	0	3	0	14	5	0	19	135
Total	42	56	17	0	115	18	188	10	0	216	3	16	5	0	24	4	66	8	0	78	433
05:00 PM	18	15	1	0	34	4	66	0	0	70	3	5	2	0	10	1	22	3	0	26	140
05:15 PM	16	12	6	0	34	7	68	3	0	78	1	2	0	0	3	1	29	3	0	33	148
05:30 PM	14	16	5	0	35	2	61	3	0	66	1	2	0	0	3	2	28	4	0	34	138
05:45 PM	16	13	4	0	33	5	43	6	0	54	0	4	1	0	5	2	28	2	0	32	124
Total	64	56	16	0	136	18	238	12	0	268	5	13	3	0	21	6	107	12	0	125	550
Grand Total	128	136	61	0	325	65	550	33	0	648	21	103	15	0	139	20	490	103	0	613	1725
Apprch %	39.4	41.8	18.8	0		10	84.9	5.1	0		15.1	74.1	10.8	0		3.3	79.9	16.8	0		
Total %	7.4	7.9	3.5	0	18.8	3.8	31.9	1.9	0	37.6	1.2	6	0.9	0	8.1	1.2	28.4	6	0	35.5	1

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002 File Name: Locust Grove Rd & Columbia Rd

Intersection: Locust Grove / Columbia Rd

City, State: Ada County, Idaho

Site Code : 00000000

Start Date : 8/7/2018

Control: All Stop Page No : 2

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002 File Name: Locust Grove Rd & Columbia Rd

Intersection: Locust Grove / Columbia Rd

City, State: Ada County, Idaho

Site Code : 00000000

Start Date : 8/7/2018

Control: All Stop Page No : 3

			t Grov	e Roa orth	ıd			bard I					t Grov	e Roa	d			ımbia rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	n 07:00	AM to	o 11:45	AM - P	eak 1 d	of 1													
Peak Hour fo	r Entire	e Inter	section	n Begir	ns at 07:	00 AM															
07:00 AM	1	1	2	Ō	4	1	12	0	0	13	2	11	0	0	13	0	41	15	0	56	86
07:15 AM	4	1	6	0	11	3	19	1	0	23	0	17	2	0	19	1	51	20	0	72	125
07:30 AM	8	7	7	0	22	4	21	2	0	27	3	9	0	0	12	3	69	14	0	86	147
07:45 AM	3	7	3	0	13	7	19	1	0	27	2	4	2	0	8	0	50	12	0	62	110
Total Volume	16	16	18	0	50	15	71	4	0	90	7	41	4	0	52	4	211	61	0	276	468
% App. Total	32	32	36	0		16.7	78.9	4.4	0		13.5	78.8	7.7	0		1.4	76.4	22.1	0		
PHF	.500	.571	.643	.000	.568	.536	.845	.500	.000	.833	.583	.603	.500	.000	.684	.333	.764	.763	.000	.802	.796

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002 File Name: Locust Grove Rd & Columbia Rd

Intersection: Locust Grove / Columbia Rd Site Code : 00000000 Start Date : 8/7/2018 City, State: Ada County, Idaho

Control: All Stop Page No : 4

12

+45 mins.

Total Volume

% App. Total

PHF

19

35.2

8

			t Grov	e Roa	ıd			bard rom E					st Grov	ve Roa outh	d			umbia rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Time Right 1111 Left Peds App. Total Init. ak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1 ak Hour for Each Approach Begins at:																				
Peak Hour IC			bach B	egins	at:	T															1
+0 mins.	07:15 AN 4	1	6	0	11	07:15 AN	19	1	0	23	07:00 AM	11	0	0	13	07:00 AM	41	15	0	56	
+15 mins.	8	7	7	0	22	4	21	2	0	27	0	17	2	0	19	1	51	20	0	72	
+30 mins.	3	7	3	0	13	7	19	1	0	27	3	9	0	0	12	3	69	14	0	86	

14

0

8

0

50

12

O

62 276

.802

0

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002 File Name: Locust Grove Rd & Columbia Rd

Intersection: Locust Grove / Columbia Rd

City, State: Ada County, Idaho

Site Code : 00000000

Start Date : 8/7/2018

Control: All Stop Page No : 5

			t Grov	e Roa orth	ıd			bard I					t Grov	e Roa	d			umbia rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s From	12:00	PM to	05:45 I	PM - P	eak 1 c	of 1													
Peak Hour fo	r Entire	e Inter	section	n Begir	ns at 04:	45 PM															
04:45 PM	20	15	4	Ö	39	6	64	4	0	74	1	2	0	0	3	0	14	5	0	19	135
05:00 PM	18	15	1	0	34	4	66	0	0	70	3	5	2	0	10	1	22	3	0	26	140
05:15 PM	16	12	6	0	34	7	68	3	0	78	1	2	0	0	3	1	29	3	0	33	148
05:30 PM	14	16	5	0	35	2	61	3	0	66	1	2	0	0	3	2	28	4	0	34	138
Total Volume	68	58	16	0	142	19	259	10	0	288	6	11	2	0	19	4	93	15	0	112	561
% App. Total	47.9	40.8	11.3	0		6.6	89.9	3.5	0		31.6	57.9	10.5	0		3.6	83	13.4	0		
PHF	.850	.906	.667	.000	.910	.679	.952	.625	.000	.923	.500	.550	.250	.000	.475	.500	.802	.750	.000	.824	.948

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002 File Name: Locust Grove Rd & Columbia Rd

Intersection: Locust Grove / Columbia Rd Site Code : 00000000 Start Date : 8/7/2018 City, State: Ada County, Idaho

Control: All Stop Page No : 6

61

3

0

+45 mins.

Total Volume

% App. Total

PHF

14

68

47.9

.850

16

0

35

		Locus Fr	t Grov		ıd			bard rom E					t Grov	e Roa	d			umbia rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Time 100															-					
Peak Hour to	or ⊨acn 04:45 PM		oacn B	egins	at:	04:45 PM	i				04:15 PM					05:00 PM					1
+0 mins.	20	15	4	0	39	6	64	4	0	74	1	6	4	0	11	1	22	3	0	26	
+15 mins.	18	15	1	0	34	4	66	0	0	70	0	8	0	0	8	1	29	3	0	33	
+30 mins.	16	12	6	0	34	7	68	3	0	78	1	2	0	0	3	2	28	4	0	34	

66

3

0

10

2

28

2

0

0

32

125

.919

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 431-2993

Study: WHPA0002

Intersection: Locust Grove / Columbia Rd

City, State: Ada County, Idaho

Control: All Stop

File Name: Locust Grove Rd & Columbia Rd

Site Code : 00000000 Start Date : 8/7/2018

Page No : 7

Image 1

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 9/10/2019

Page No : 1

Groups Printed- General Traffic

	1	Locust	Grove	e Road			Lake	Hazel	-	ntea- G				e Road	ı		Lake	Hazel	Road		
			om No					rom E			_		om So					om W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	4	5	6	0	15	21	41	1	0	63	3	30	0	0	33	0	39	6	0	45	156
07:15 AM	0	10	7	0	17	20	56	4	0	80	4	23	1	0	28	2	65	2	1	70	195
07:30 AM	2	5	8	0	15	11	53	1	0	65	3	18	2	0	23	0	73	6	0	79	182
07:45 AM	2	9	10	0	21	12	34	2	0	48	1	35	0	0	36	0	71	6	0	77	182
Total	8	29	31	0	68	64	184	8	0	256	11	106	3	0	120	2	248	20	1	271	715
08:00 AM	3	8	14	0	25	8	34	1	1	44	3	26	0	0	29	1	68	2	1	72	170
08:15 AM	1	5	6	0	12	12	39	1	0	52	3	20	1	0	24	1	50	7	0	58	146
08:30 AM	3	8	8	0	19	16	28	3	0	47	2	23	0	0	25	0	36	1	0	37	128
08:45 AM	1	13	8	0	22	10	36	0	0	46	3	28	0	0	31	1	38	6	0	45	144_
Total	8	34	36	0	78	46	137	5	1	189	11	97	1	0	109	3	192	16	1	212	588
	ı .	•				۱					ء ا					. ا				•	
04:00 PM	4	28	13	0	45	14	45	4	0	63	0	10	1	0	11	1	36	2	0	39	158
04:15 PM	4	22	17	0	43	11	74	4	0	89	0	13	2	0	15	0	37	3	1	41	188
04:30 PM	3	33	18	0	54	12	70	3	0	85	1	13	0	0	14	2	46	2	0	50	203
04:45 PM Total	18	42 125	<u>20</u> 68	0	69 211	11 48	<u>68</u> 257	1 12	2	82 319	2	<u>9</u> 45	14	0	11 51	4	39 158	7	0 1	40 170	751
	18			U				12					4			4		/	1		
05:00 PM	6	37	19	0	62	18	78	1	0	97	2	14	4	0	20	0	57	1	0	58	237
05:15 PM	3	47	26	0	76	22	70	4	0	96	3	15	1	0	19	2	56	1	0	59	250
05:30 PM	8	31	18	0	57	16	73	5	0	94	2	19	0	0	21	0	37	3	0	40	212
05:45 PM	4	46	9	0	59	12	60	3	0	75	2	16	1_	0	19	1	47	2	0	50	203
Total	21	161	72	0	254	68	281	13	0	362	9	64	6	0	79	3	197	7	0	207	902
Grand Total	55	349	207	0	611	226	859	38	3	1126	33	312	14	0	359	12	795	50	3	860	2956
Apprch %	9	57.1	33.9	0		20.1	76.3	3.4	0.3		9.2	86.9	3.9	0		1.4	92.4	5.8	0.3		
Total %	1.9	11.8	7	0	20.7	7.6	29.1	1.3	0.1	38.1	1.1	10.6	0.5	0	12.1	0.4	26.9	1.7	0.1	29.1	

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 9/10/2019

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 9/10/2019

	I		Grove om No	e Road	l			Hazel	Road ast]		Grove om So	e Road	l			Hazel	Road est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	11:45 A	M - P	eak 1 d	of 1	•	•		•						•			
Peak Hour fo	r Entire	e Inters	section	Begin	s at 07:1	5 AM															
07:15 AM	0	10	7	0	17	20	56	4	0	80	4	23	1	0	28	2	65	2	1	70	195
07:30 AM	2	5	8	0	15	11	53	1	0	65	3	18	2	0	23	0	73	6	0	79	182
07:45 AM	2	9	10	0	21	12	34	2	0	48	1	35	0	0	36	0	71	6	0	77	182
08:00 AM	3	8	14	0	25	8	34	1	1	44	3	26	0	0	29	1	68	2	1	72	170
Total Volume	7	32	39	0	78	51	177	8	1	237	11	102	3	0	116	3	277	16	2	298	729
% App. Total	9	41	50	0		21.5	74.7	3.4	0.4		9.5	87.9	2.6	0		1	93	5.4	0.7		
PHF	.583	.800	.696	.000	.780	.638	.790	.500	.250	.741	.688	.729	.375	.000	.806	.375	.949	.667	.500	.943	.935

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000

Start Date : 9/10/2019

]	Locust	Grove	e Road	l		Lake	Hazel	Road]	Locust	Grove	e Road			Lake	Hazel	Road	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fr	om W	est	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total
eak Hour A	nalysis	s From	07:00	AM to	11:45 A	AM - P	eak 1 d	of 1												
eak Hour fo	r Each	Appro	ach Be	egins a	t:															
	07:15 AM					07:00 AM					07:00 AM	1				07:15 AM				
+0 mins.	0	10	7	0	17	21	41	1	0	63	3	30	0	0	33	2	65	2	1	70
+15 mins.	2	5	8	0	15	20	56	4	0	80	4	23	1	0	28	0	73	6	0	79
+30 mins.	2	9	10	0	21	11	53	1	0	65	3	18	2	0	23	0	71	6	0	77
+45 mins.	3	8	14	0	25	12	34	2	0	48	1	35	0	0	36	1	68	2	1	72
Total Volume	7	32	39	0	78	64	184	8	0	256	11	106	3	0	120	3	277	16	2	298
% App. Total	9	41	50	0		25	71.9	3.1	0		9.2	88.3	2.5	0		1	93	5.4	0.7	
DITE	500	000		000	700	7.0	001	500	000	000	600	252	275	000	022	275	0.40		500	0.42

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 9/10/2019

]	Locust	Grove	e Road	l		Lake	Hazel	Road]	Locust	Grove	Road	l		Lake	Hazel	Road		
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	12:00	PM to	05:45 P	PM - Pe	eak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	Begin	s at 05:0	00 PM															
05:00 PM	6	37	19	0	62	18	78	1	0	97	2	14	4	0	20	0	57	1	0	58	237
05:15 PM	3	47	26	0	76	22	70	4	0	96	3	15	1	0	19	2	56	1	0	59	250
05:30 PM	8	31	18	0	57	16	73	5	0	94	2	19	0	0	21	0	37	3	0	40	212
05:45 PM	4	46	9	0	59	12	60	3	0	75	2	16	1	0	19	1	47	2	0	50	203
Total Volume	21	161	72	0	254	68	281	13	0	362	9	64	6	0	79	3	197	7	0	207	902
% App. Total	8.3	63.4	28.3	0		18.8	77.6	3.6	0		11.4	81	7.6	0		1.4	95.2	3.4	0		
DHE	656	956	602	000	836	773	001	650	000	033	750	9/12	375	000	040	275	864	593	000	977	002

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 9/10/2019

	1	Locust Grove Road From North					Lake Hazel Road Locust Grove Road Lake H					Hazel	Road								
		From North				From East				From South				From West							
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for	r Each	Appro	oach Be	egins at																
	04:45 PM					04:45 PM					05:00 PM					04:30 PM				
+0 mins.	7	42	20	0	69	11	68	1	2	82	2	14	4	0	20	2	46	2	0	50
+15 mins.	6	37	19	0	62	18	78	1	0	97	3	15	1	0	19	1	39	0	0	40
+30 mins.	3	47	26	0	76	22	70	4	0	96	2	19	0	0	21	0	57	1	0	58
+45 mins.	8	31	18	0	57	16	73	5	0	94	2	16	1	0	19	2	56	1	0	59
Total Volume	24	157	83	0	264	67	289	11	2	369	9	64	6	0	79	5	198	4	0	207
% App. Total	9.1	59.5	31.4	0		18.2	78.3	3	0.5		11.4	81	7.6	0		2.4	95.7	1.9	0	
PHF	.750	.835	.798	.000	.868	.761	.926	.550	.250	.951	.750	.842	.375	.000	.940	.625	.868	.500	.000	.877

L2DataColletion.com Idaho (208) 860-7554 Utah (801) 413-2993

Study: WHPA0005

Intersection: Locust Grove / Lake Hazel

City, State: Kuna, Idaho Control: Stop Sign File Name: Locust Grove Rd & Lake Hazel Rd

Site Code : 00000000 Start Date : 9/10/2019

Page No : 7

Image 1

Study: WHPA0002 Type: Volume / Direction Tech: Judd / Klaren Count: Axle Hits /2 L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993 Hubbard Rd b Meridian Rd & Hubbard Rd VOL

ibbard Rd b Meridian Rd & Hubbard Rd VOL Date Start: 07-Aug-18 Date End: 08-Aug-18 Hubbard Rd between Meridian Rd & Locust Ada County, Idaho

Start Time	07-Aug-18 Tue	WB	EB	Total
12:00 AM		*	*	*
12:15		*	*	*
12:30		*	*	*
12:45		*	*	*
01:00		*	*	*
01:15		*	*	*
01:30		*	*	*
01:45		*	*	*
02:00		*	*	*
02:15		*	*	*
02:30		*	*	*
02:45		*	*	*
03:00		0	0	0
03:15		0	0	0
03:30		0	0	0
03:45		0	0	0
04:00		0	1	1
04:15		0	0	0
04:30		0	0	0
04:45		0	0	0
05:00		Ō	4	4
05:15		0	0	0
05:30		1	Ö	1
05:45		0	0	0
06:00		Ö	2	2
06:15		Ö	3	3
06:30		1	10	11
06:45		2	9	11
07:00		2	7	9
07:15		3	10	13
07:30		6	9	15
07:45		3	8	11
08:00		2	8	10
08:15		2	Ö	2
08:30		12	6	18
08:45		1	1	2
09:00		4	6	10
09:15		4	10	14
09:30		6	6	12
09:45		11	2	13
10:00		8	3	11
10:00		4	14	18
10:13		6	2	8
10:30		6 8	2 6	14
11:00		7	5	12
11:15		4	6	10
11:30			0	
11:30		6 8	3 4	9
11.45 Total		<u>8</u> 111	145	12
Total				256
Percent		43.4%	56.6%	00.20
Peak	-	09:15	06:30	 09:30
Vol. P.H.F.	-	29 0.659	36	 54 0.750
P.H.F.		6.60	0.900	0.750

Study: WHPA0002 Type: Volume / Direction Tech: Judd / Klaren Count: Axle Hits /2 L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993 Hubbard Rd b Meridian Rd & Hubbard Rd VOL

ubbard Rd b Meridian Rd & Hubbard Rd VOL Date Start: 07-Aug-18 Date End: 08-Aug-18 Hubbard Rd between Meridian Rd & Locust Ada County, Idaho

Start Time	07-Aug-18 Tue	WB	EB	Total
12:00 PM		10	3	13
12:15		2	4	6
12:30		6	5	11
12:45		6	3	9
01:00		6	6	12
01:15		5	10	15
01:30		3	8	11
01:45		10	4	14
02:00		7	6	13
02:15		9	3	12
02:30		6	3	9
02:45		4	1	5
03:00		12	10	22
03:15		3	1	4
03:30		7	7	14
03:45		8	3	11
04:00		5	2	7
04:00		5	6	, 11
04:30		10	2	12
04:45		16	2	18
05:00		3	2	5
05:00		5	4	9
05:30		10	1	
05:45		6	8	14
06:00		6	1	7
06:00		4	4	8
06:30		6	3	9
06:45		4	4	8
07:00		3	4	7
07:00		ა ე	5	7
07:13		2 2	4	6
07:30		6	1	7
08:00 08:15		1 4	2 3	3 7
				7
08:30		1	2	3 2
08:45		1	1	2
09:00		0 2	2	2
09:15			1	ن م
09:30		4	0	4
09:45		1	1	2 5
10:00		3	2	
10:15		0	0	0
10:30		1	1	2
10:45		0	0	U
11:00		2	0	2 2
11:15		1	1	2
11:30		1	1	2
11:45		0	0	0
Total		219	147	366
Percent		59.8%	40.2%	10.1
Peak	-	16:00	13:00	 13:15
Vol. P.H.F.	-	36	28	 53
ν μ ν		0.563	0.700	0.883

Study: WHPA0002 Type: Volume / Direction Tech: Judd / Klaren Count: Axle Hits /2 L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993 Hubbard Rd b Meridian Rd & Hubbard Rd VOL

bbard Rd b Meridian Rd & Hubbard Rd VOL Date Start: 07-Aug-18 Date End: 08-Aug-18 Hubbard Rd between Meridian Rd & Locust Ada County, Idaho

Start Time	08-Aug-18 Wed	WB	EB								Total
12:00 AM	vveu	0		0							0
12:15		1		0							1
12:13		1		0							1
12:30		0		1							1
01:00				0							
01:00		0									0
		0		1							1
01:30		0		0							0
01:45		0		1							1
02:00		1		0							1
02:15		0		0							0
02:30		0		0							0
02:45		0		0							0
03:00				*							
03:15				*							
03:30		*		*							*
03:45		*									*
04:00		*		*							*
04:15		*		*							*
04:30		*		*							*
04:45		*		*							*
05:00		*		*							*
05:15		*		*							*
05:30		*		*							*
05:45		*		*							*
06:00		*		*							*
06:15		*		*							*
06:30		*		*							*
06:45		*		*							*
07:00		*		*							*
07:15		*		*							*
07:30		*		*							*
07:45		*		*							*
08:00		*		*							*
08:15		*		*							*
08:30		*		*							*
08:45		*		*							*
09:00		*		*							*
09:15		*		*							*
09:30		*		*							*
09:45		*		*							*
10:00		*		*							*
10:15		*		*							*
10:30		*		*							*
10:45		*		*							*
11:00		*		*							*
11:15		*		*							*
11:30		*		*							*
11:45		*		*							*
Total		3		3							6
Percent		50.0%									U
Percent Peak		12.00	00.0	2∩ 20							12:00
	-	12:00			-	-	-	-	-	-	12.00
Vol.	-	0.500	0.5	2	-	-	-	-	-	-	0.750
P.H.F.		0.500		OF							0.750
Total		333	47/	95							628
Percent		53.0%	47.0	J70							

Study: WHPA0005 Type: Volume / Direction / Class Tech: Judd / Klaren Count: Axle Hits / 2

L2DataCollection.com Idaho (208) 860-7554

Utah (801) 413-2998 ust Grove Rd b Deer Flat Rd & Hubbard Rd VOL Date Start: 10-Sep-19
Date End: 10-Sep-19
Locust Grove between Deer Flat & Hubbard

Kuna, Idaho

Start Time	10-Sep-19 Tue	SB	NB	Total
12:00 AM	Tue	3	0	3
12:15		0	0	0
12:30		0	0	0
12:45		0	0	0
01:00		0	0	0
01:15		0	0	0
01:30		0	0	0
01:45		0	0	0
02:00		0	1	
02:00		0	0	1
02.15				
02:30		0	0	0
02.45		0		0
03:00		0	0	0
03.15		0		
03:30		1	0 2	1
03:45		1		3
04:00		0	0	0
04:15		0	0	0
04:30		0	3	3
04:45		0	0	0
05:00		2	1	3
05:15		1	0	1
05:30		1	5	6
05:45		0	4	4
06:00		2	4	6
06:15		1	5	6
06:30		3	10	13
06:45		4	8	12
07:00		5	14	19
07:15		8	7	15
07:30		7	14	21
07:45		3	11	14
08:00		4	14	18
08:15		7	6	13
08:30		10	6	16
08:45		6	12	18
09:00		4	6	10
09:15		8	9	17
09:30		4	8	12
09:45		7	8	15
10:00		10	6	16
10:15		5	8	13
10:30		5	10	15
10:45		15	5	20
11:00		8	5	13
11:15		8	6	14
11:30		6	7	13
11:45		8	8	16
Total		157	213	370
Percent		42.4%	57.6%	
Peak	_	10:45	07:00	07:00
Vol.	-	37	46	69
P.H.F.		0.617	0.821	0.821
		0.017	0.021	0.021

L2DataCollection.com Idaho (208) 860-7554 Utah (801) 413-2923 ust Grove Rd b Deer Flat Rd & Hubbard Rd VOL

Study: WHPA0005 Type: Volume / Direction / Class Tech: Judd / Klaren Count: Axle Hits / 2

Date Start: 10-Sep-19
Date End: 10-Sep-19
Locust Grove between Deer Flat & Hubbard Kuna, Idaho

Start Time	10-Sep-19 Tue	SB	NB	Tota	al le
12:00 PM		9	7		16
12:15		8	14		22
12:30		14	8		22
12:45		5	2		7
01:00		10	4		14
01:15		9	10		19
01:30		8	6		14
01:45		8	5		13
02:00		10	10		20
02:15		8	7		15
02:30		8	4		12
02:45		10	4		14
03:00		12	16		28
03:15		15	5		20
03:30		18	5		23
03:45		12	12		24
04:00		12	8		20
04:15		24	8		32
04:30		25	4		29
04:45		19	5		24
05:00		22	10		32
05:15		30	7		37
05:30		33	11		44
05:45		22	10		32
06:00		20	7		27
06:00		17	8		25
06:30		16	11		27
06:45		11	4		15
07:00		10	2		12
07:00		12	2		14
07.15		10	5		
07.30		12	10		15 22
08:00					22
08:15		4	4 2		8 6
08:30		7	4		11
08:45		3	3		6
09:00		1	2		3 7
09:15		4	3		- /
09:30		3 2	2		5 3
09:45			1		
10:00		0	1		1
10:15		2	1		3
10:30		1	0		1
10:45		1	3		4
11:00		1	2		3 3 2
11:15		3	0		3
11:30		1	1		2
11:45		1 107	0		1
Total		497	260		757
Percent		65.7%	34.3%		7.00
Peak	-	17:00	15:00		7:00
Vol.	-	107	38		145
P.H.F.		0.811	0.594	0.	824
Grand Total		654	473	1	127
Percent		58.0%	42.0%		

Study: WHPA0002 Type: Volume / Direction Tech: Judd / Klaren Count: Axle Hits / 2

L2 Data Collection.com

L2DataCollection.com

Idaho (208) 860-7554 Utah (801) 431-2993 ust Grove Rd between Columbia & Hubbard VOL

Date Start: 07-Aug-18

Date End: 08-Aug-18 Locust Grove between Columbia & Hubbard

Ada County, Idaho

Start Time	07-Aug-18 Tue	SB		NB	Total
12:00 AM			*	*	*
12:15			*	*	*
12:30			*	*	*
12:45			*	*	*
01:00			*	*	*
01:15			*	*	*
01:30			*	*	*
01:45			*	*	*
02:00			*	*	*
02:15			*	*	*
02:30			*	*	*
02:45			*	*	*
03:00			0	0	0
03:15			1	0	1
03:30			0	0	0
03:45			0	0	0
04:00			0	1	1
04:15			0	0	0
04:30			0	0	0
04:45			0	0	0
05:00			0	3	3
05:15			2	0	3 2
05:30			1	5	6
05:45			0	4	4
06:00			0	1	1
06:15			2	0	2
06:30			0	9	9
06:45			6	15	21
07:00			1	13	14
07:15			4	19	23
07:30			12	12	24
07:45			10	8	18
08:00			6	12	18
08:15			6	16	22
08:30			8	9	17
08:45			4	6	10
09:00			5	6	11
09:15			5	9	14
09:30			7	8	15
09:45			9	6	15
10:00			10	4	14
10:15			4	10	14
10:30			10	8	18
10:45			7	9	16
11:00			3	3	6
11:15			6	9	15
11:30			6	6	12
11:45			10	8	18
Total			45	219	364
Percent		39.8		60.2%	
Peak	-	07:3	30	06:45	 07:15
Vol.	-		34	59	 83
P.H.F.		0.70	10	0.776	0.865

Study: WHPA0002 Type: Volume / Direction Tech: Judd / Klaren Count: Axle Hits / 2

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993 ust Grove Rd between Columbia & Hubbard VOL Date Start: 07-Aug-18

Date End: 08-Aug-18 Locust Grove between Columbia & Hubbard

Ada County, Idaho

Start Time	07-Aug-18 Tue	SB	NB	Total
12:00 PM		5	5	10
12:15		10	4	14
12:30		5	8	13
12:45		8	6	14
01:00		11	4	15
01:15		6	4	10
01:30		5	5	10
01:45		8	2	10
02:00		13	6	19
02:15		8	5	13
02:30		14	4	18
02:45		9	4	13
03:00		12	10	22
03:15		7	6	13
03:30		12	10	22
03:45		14	8	22
04:00		21	2	23
04:15		16	14	30
04:30		16	12	28
04:45		20	5	25
05:00		18	12	30
05:15		17	4	21
05:30		19	5	24
05:45		19	4	23
06:00		15	8	23
06:15		9	4	13
06:30		14	4	18
06:45		7	6	13
07:00		6	5	11
07:15		10	4	14
07:30		9	5	14
07:45		4	2	6
08:00		1	3	4
08:15		6	0	6
08:30		6	2	8
08:45		5	3	8
09:00		8	3	11
09:15		8	2	10
09:30		4	1	5
09:45		6	1	7
10:00		4	5	9
10:00		3	0	3
10:13		0		ა ე
10:30		4	2 0	2 4
11:00		2		2
11:15			0	
		1	0	1
11:30		2	0	2
11:45		427	240	1
Total		427	210	637
Percent		67.0%	33.0%	40.45
Peak	-	16:45	16:15	 16:15
Vol.	-	74	43	 113
P.H.F.		0.925	0.768	0.942

Study: WHPA0002 Type: Volume / Direction Tech: Judd / Klaren Count: Axle Hits / 2

L2 Data Collection.com

L2DataCollection.com

Idaho (208) 860-7554 Utah (801) 431-2993 ust Grove Rd between Columbia & Hubbard VOL

Date Start: 07-Aug-18

Date End: 08-Aug-18 Locust Grove between Columbia & Hubbard Ada County, Idaho

Start Time	08-Aug-18 Wed	SB	NE	3	Total
12:00 AM			1	0	
12:15			2	0	
12:30			1	Ō	
12:45			0	Ŏ	
01:00			2	Ö	
01:00			0	0	
01:13				1	
			0		
01:45			0	0	
02:00			0	0	
02:15			1	0	
02:30			0	0	
02:45			0	0	
03:00			*	*	
03:15			*	*	
03:30			*	*	
03:45			*	*	
04:00			*	*	
04:15			*	*	
04:30			*	*	
04:30			*	*	
			*	*	
05:00					
05:15					
05:30			*	*	
05:45			*	*	
06:00			*	*	
06:15			*	*	
06:30			*	*	
06:45			*	*	
07:00			*	*	
07:15			*	*	
07:30			*	*	
07:45			*	*	
			*	*	
08:00			+	*	
08:15					
08:30			*	*	
08:45			*	*	
09:00			*	*	
09:15			*	*	
09:30			*	*	
09:45			*	*	
10:00			*	*	
10:15			*	*	
10:30			*	*	
10:30			*	*	
			*	*	
11:00			*	*	
11:15				<u>.</u>	
11:30				*	
11:45			*	*	
Total			7	1	
Percent		87.59	<u>%</u> 12	2.5%	
Peak	-	00:1	5 0	0:45	00:1
Vol.	_		5	1	
P.H.F.		0.62	25 0	.250	0.62
Total		57		430	100

Study: WHPA0005 Type: Volume / Direction / Class Tech: Judd / Klaren

Count: Axle Hits / 2

L2DataCollection.com Idaho (208) 860-7554

Utah (801) 413t2993t Grove Rd b Columbia Rd & Lake Hazel Rd VOL Date Start: 10-Sep-19 Date End: 10-Sep-19 Locust Grove betw Columbia & Lake Hazel

Kuna, Idaho

Start Time	10-Sep-19 Tue	SB	NB						-		Total
12:00 AM	1 40	0	1								1
12:15		0	0								0
12:30		0	Ö								0
12:45		0	Ö								0
01:00		1	0								1
01:15		0	Ö								0
01:30		0	0								0
01:45		0	0								0
02:00		0	0								0
02:15		0	0								0
02:30		0	0								0
02:45		0	1								1
03:00		0	0								0
03:15		0	0								0
03:30		1	0								1
03:45		1	1								2
04:00		0	0								0
04:15		0	2								2
04:30		0	2								2
04:45		0	3								3
05:00		1	0								1
05:15		2	1								3
05:30		3	10								13
05:45		3	10								13
06:00		5	7								12
06:15		2	7								9
06:30		5	20								25
06:45		7	30								37
07:00		5	32								37
07:15		14	28								42
07:30		10	25								35
07:45		10	40								50
08:00		10	27								37
08:15		7	24								31
08:30		12	26								38
08:45		18	35								53
09:00		10	16								26
09:15		14	8								22
09:30		6	17								23
09:45		9	16								25
10:00		18	6								24
10:15		12	12								24
10:30		8	10								18
10:45		21	16								37
11:00		13	12								25
11:15		8	6								14
11:30		12	16								28
11:45 Total		15	12 479								27
Percent		263 35.4%	479 64.6%								742
Percent Peak		35.4% 10:00	07:00								07:00
Vol.	-	59	125	-	-	-	-	-		-	164
P.H.F.	-	0.702	0.781	-	-	-	-	-	•	-	0.820
۲.П.Г.		0.702	0.701								0.020

Study: WHPA0005 Type: Volume / Direction / Class Tech: Judd / Klaren

Count: Axle Hits / 2

L2DataCollection.com Idaho (208) 860-7554

Utah (801) 413±2293 Grove Rd b Columbia Rd & Lake Hazel Rd VOL Date Start: 10-Sep-19 Date End: 10-Sep-19 Locust Grove betw Columbia & Lake Hazel

Kuna, Idaho

Start Time	10-Sep-19 Tue	SB	NB	Total
12:00 PM		18	14	3.
12:15		11	14	2
12:30		10	8	1
12:45		16	11	2
01:00		12	8	2
01:15		16	16	3.
01:30		14	12	2
01:45		14	14	2
02:00		14	8	2
02:15		16	12	2
02:30		10	13	2
02:45		10	5	
03:00		22	18	4
03:15		20	12	3.
03:30		18	6	2
03:45		30	22	
04:00		30	9	3
04:15		30	15	4.
04:30		36	16	5.
04:45		43	14	5
05:00		39	22	
05:15		55	20	7
05:30		39	24	6
05:45		48	20	6
06:00		38	16	5
06:15		32	12	4
06:30		26	11	3
06:45		18	16	3
07:00		20	6	2
07:15		22	9	3
07:30		15	8	2
07:45		13	6	1:
08:00		9	8	1
08:15		12	7	1
08:30		14	9	2
08:45		8	6	1.
09:00		4	2	1
09:15		6	2 5	1
09:30		8	2	1
09:45		3	2	! -
10:00		7	1	
10:00		6	0	
10:13		1	2	
10:30		4	2	
11:00		·	2	
11:00		1	0	
11:15		1		
11:30		2	0	
Total		842	465	130
				130
Percent Pook		64.4%	35.6%	17:0
Peak	-	17:00	17:00	
Vol.	-	181	86	20
P.H.F.		0.823	0.896	0.89
Grand Total		1105	944	204
Percent		53.9%	46.1%	

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.91 **Urban Street** Meridian Rd Analysis Year 2019 Analysis Period 1> 7:00 Meridian and Hubbard File Name Meridian&Hubbard-AM-Exst2019.xus Intersection **Project Description** Exst AM Peak WB **Demand Information** EB NB SB Approach Movement L R L R R R 10 Demand (v), veh/h 133 23 14 4 9 874 4 14 324 42 **Signal Information** Ж وذلك Cycle, s 90.0 Reference Phase 2 542 Offset, s 0 Reference Point End 0.9 26.9 Green 1.0 39.2 1.3 0.6 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.0 48.1 5.0 43.2 5.3 30.9 5.9 31.5 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g_s), s 5.9 2.2 2.3 24.2 2.5 9.8 Green Extension Time (g_e), s 0.3 0.0 0.0 0.0 0.0 2.7 0.0 2.7 Phase Call Probability 0.97 0.17 0.22 1.00 0.32 1.00 0.00 0.00 0.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 146 41 8 15 10 483 482 15 204 198 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1735 1767 1644 1767 1856 1852 1767 1856 1781 3.9 0.2 0.5 0.3 22.2 22.2 0.5 7.7 7.8 Queue Service Time (g_s), s 1.1 7.8 Cycle Queue Clearance Time (q c), s 3.9 1.1 0.2 0.5 0.3 22.2 22.2 0.5 7.7 0.32 Green Ratio (g/C) 0.52 0.49 0.45 0.44 0.31 0.30 0.30 0.31 0.31 Capacity (c), veh/h 794 851 691 716 297 555 554 148 567 544 Volume-to-Capacity Ratio (X) 0.184 0.048 0.011 0.021 0.033 0.870 0.870 0.104 0.359 0.364 Back of Queue (Q), ft/In (95 th percentile) 64.6 19.6 3.8 8.4 6.5 377.9 368.5 10.1 151.3 144.1 Back of Queue (Q), veh/ln (95 th percentile) 2.5 8.0 0.1 0.3 0.3 14.8 14.7 0.4 5.9 5.8 Queue Storage Ratio (RQ) (95 th percentile) 0.65 0.00 0.04 0.00 0.02 0.00 0.00 0.03 0.00 0.00 Uniform Delay (d 1), s/veh 11.1 12.0 13.8 14.5 21.8 29.9 29.9 23.8 24.4 24.4 Incremental Delay (d 2), s/veh 0.0 0.1 0.0 0.1 0.0 1.7 1.7 0.1 0.1 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 11.2 12.1 13.8 14.5 21.8 31.6 31.6 23.9 24.5 24.6 Level of Service (LOS) В В В В С С С С С С 11.4 В 14.3 31.5 С 24.5 С Approach Delay, s/veh / LOS В Intersection Delay, s/veh / LOS 27.1 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.26 В 2.26 В 1.92 1.92 В В Bicycle LOS Score / LOS 0.80 Α 0.53 Α 1.29 Α 0.83

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Lake Hazel								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Lake Hazel Rd								
Analysis Year	2019	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.94								
Time Analyzed	EXISTING AM Peak Hour										
Project Description	Ledgestone South	Ledgestone South									

Lanes

Vehicle Volume and Adjust	ments											
Approach		Eastbound			Westbound			Northboun	d	Southbound		
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	16	277	3	8	177	51	3	102	11	39	32	7
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	315			251			123			83		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and Se	Departure Headway and Service Time											
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.280			0.223			0.110			0.074		
Final Departure Headway, hd (s)	4.87			4.83			5.43			5.60		
Final Degree of Utilization, x	0.426			0.337			0.186			0.129		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	2.87			2.83			3.43			3.60		
Capacity, Delay and Level o	f Servic	е										
Flow Rate, v (veh/h)	315			251			123			83		
Capacity	740			746			663			643		
95% Queue Length, Q ₉₅ (veh)	2.1			1.5			0.7			0.4		
Control Delay (s/veh)	11.4			10.3			9.7			9.4		
Level of Service, LOS	В			В			Α			Α		
Approach Delay (s/veh)		11.4		10.3			9.7			9.4		
Approach LOS		В			В			A A				
Intersection Delay, s/veh LOS			10).5			В					

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Columbia								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Columbia Rd								
Analysis Year	2019	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.80								
Time Analyzed	EXISTING AM Peak Hour										
Project Description	Ledgestone South	Ledgestone South									

Lanes

Vehicle Volume and Adjust	tments											
Approach		Eastbound			Westbound			Northboun	d	Southbound		
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	61	211	4	4	71	15	4	41	7	18	16	16
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	345			113			65			63		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.307			0.100			0.058			0.056		
Final Departure Headway, hd (s)	4.45			4.58			5.04			4.99		
Final Degree of Utilization, x	0.427			0.143			0.091			0.087		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	2.45			2.58			3.04			2.99		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	345			113			65			63		
Capacity	809			786			714			721		
95% Queue Length, Q ₉₅ (veh)	2.2			0.5			0.3			0.3		
Control Delay (s/veh)	10.7			8.3			8.5			8.5		
Level of Service, LOS	В			А			А			А		
Approach Delay (s/veh)		10.7		8.3				8.5		8.5		
Approach LOS		В			А			Α		А		
Intersection Delay, s/veh LOS			9	.8					,	A		

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust Grove and Hubbard								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	9/16/2019	East/West Street	Hubbard Rd								
Analysis Year	2019	North/South Street	Locust Grove Rd								
Time Analyzed	Existing AM	Peak Hour Factor	0.82								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Ledgestone South										

Lanes

Vehicle Volumes and Ad	justme	nts															
Approach		Eastbound				Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		14	17	4		0	9	2		0	38	1		1	11	5	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%))		0				
Right Turn Channelized																	
Median Type Storage				Undi	ivided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	T	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Т	17				0					48				21		
Capacity, c (veh/h)		1598				1582					814				872		
v/c Ratio		0.01				0.00					0.06				0.02		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.1		
Control Delay (s/veh)		7.3				7.3					9.7				9.2		
Level of Service (LOS)		А				А					А				А		
Approach Delay (s/veh)		3	.0			0.0				9.7				9.2			
Approach LOS									A				A				

Generated: 10/21/2019 2:25:29 PM

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust Grove and Deer Fla										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	9/16/2019	East/West Street	Deer Flat										
Analysis Year	2019	North/South Street	Locust Grove Rd										
Time Analyzed	Existing AM Peak Hour	Peak Hour Factor	0.87										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Vehicle Volumes and Adju	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		28	138	6		0	45	4		3	13	3		4	5	13
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		32				0					22				25	
Capacity, c (veh/h)		1542				1407					645				803	
v/c Ratio		0.02				0.00					0.03				0.03	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.1				0.1	
Control Delay (s/veh)		7.4				7.6					10.8				9.6	
Level of Service (LOS)		А				А					В				А	
Approach Delay (s/veh)	1.3				0.0			10.8				9.6				
Approach LOS									В				A			

Generated: 10/21/2019 2:20:39 PM

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other PHF Jurisdiction ACHD Time Period PM Peak 0.95 **Urban Street** Meridian Rd Analysis Year 2019 Analysis Period 1>5:00 Meridian and Hubbard File Name Meridian&Hubbard-PM-Exst2019.xus Intersection **Project Description** Exst PM Peak WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 9 Demand (v), veh/h 67 28 9 9 29 29 485 8 15 1047 273 **Signal Information** J. Cycle, s 90.0 Reference Phase 2 542 Offset, s 0 Reference Point Begin 3.7 26.7 Green 1.3 2.0 1.2 39.1 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 9.0 34.4 5.3 30.7 7.2 44.4 6.0 43.1 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 4.4 2.3 2.8 10.1 2.4 34.6 Green Extension Time (g_e), s 0.1 0.0 0.0 0.0 0.0 4.6 0.0 4.5 Phase Call Probability 0.83 0.21 0.53 1.00 0.33 1.00 0.00 0.00 0.93 0.00 0.38 0.04 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 71 39 9 40 31 260 259 16 716 674 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1627 1767 1631 1767 1856 1845 1767 1856 1723 2.4 8.0 8.1 0.4 32.0 Queue Service Time (g_s), s 1.5 0.3 1.6 8.1 32.6 Cycle Queue Clearance Time (q c), s 2.4 1.5 0.3 1.6 8.0 8.1 8.1 0.4 32.0 32.6 0.34 0.30 0.45 Green Ratio (g/C) 0.37 0.31 0.47 0.45 0.46 0.43 0.43 484 Capacity (c), veh/h 556 550 508 171 832 828 413 807 749 Volume-to-Capacity Ratio (X) 0.127 0.071 0.019 0.083 0.179 0.312 0.313 0.038 0.887 0.899 Back of Queue (Q), ft/In (95 th percentile) 42.8 26.4 6.2 29.5 14.8 149.6 145.5 7.7 507.6 479.8 Back of Queue (Q), veh/ln (95 th percentile) 1.7 1.0 0.2 1.2 0.6 5.8 5.8 0.3 19.8 19.2 Queue Storage Ratio (RQ) (95 th percentile) 0.43 0.00 0.06 0.00 0.05 0.00 0.00 0.03 0.00 0.00 Uniform Delay (d 1), s/veh 18.6 20.2 21.5 22.8 19.3 15.9 15.9 13.9 23.4 23.6 Incremental Delay (d 2), s/veh 0.0 0.2 0.0 0.3 0.2 0.1 0.1 0.0 4.0 5.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 18.7 20.5 21.5 23.2 19.5 16.0 16.0 13.9 27.4 28.6 Level of Service (LOS) В С С С В В В В С С 19.3 В 22.8 С 16.2 В 27.9 С Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 24.3 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.28 В 2.28 В 1.90 1.90 В В Bicycle LOS Score / LOS 0.67 Α 0.57 Α 0.94 Α 1.65

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Lake Hazel								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Lake Hazel Rd								
Analysis Year	2019	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.90								
Time Analyzed	EXIST PM Peak Hour										
Project Description	Ledgestone South										

Vehicle Volume and Adjus	tments											
Approach		Eastbound	i		Westbound	t	1	Northboun	d		Southboun	d
Movement	L	Т	R	L	T	R	L	Т	R	L	L T	
Volume	7	197	3	13	281	68	6	64	9	72	161	21
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	230			402			88			282		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.204			0.358			0.078			0.251		
Final Departure Headway, hd (s)	5.78			5.41			6.29			5.90		
Final Degree of Utilization, x	0.369			0.604			0.153			0.463		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	3.78			3.41			4.29			3.90		
Capacity, Delay and Level	of Servic	e										
Flow Rate, v (veh/h)	230			402			88			282		
Capacity	622			666			572			610		
95% Queue Length, Q ₉₅ (veh)	1.7			4.1			0.5			2.4		
Control Delay (s/veh)	12.1			16.3			10.4			13.9		
Level of Service, LOS	В			С			В			В		
Approach Delay (s/veh)		12.1			16.3			10.4		13.9		
Approach LOS		В			С			В		В		
Intersection Delay, s/veh LOS		14.2					В					

	HCS7 All-Way Stop Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust_Columbia									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	09/16/2019	East/West Street	Columbia Rd									
Analysis Year	2019	North/South Street	Locust Grove Rd									
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.95									
Time Analyzed	EXISTING PM Peak Hour											
Project Description	Ledgestone South											

Vehicle Volume and Adjust	ments												
Approach		Eastbound	l		Westbound	d		Northboun	d		Southbound		
Movement	L	Т	R	L	Т	R	L	Т	R	L	L T		
Volume	15	93	4	10	259	19	2	11	6	16	58	68	
% Thrus in Shared Lane													
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	
Configuration	LTR			LTR			LTR			LTR			
Flow Rate, v (veh/h)	118			303			20			149			
Percent Heavy Vehicles	3			3			3			3			
Departure Headway and S	ervice Ti	me											
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.105			0.269			0.018			0.133			
Final Departure Headway, hd (s)	4.73			4.49			4.98			4.70			
Final Degree of Utilization, x	0.155			0.378			0.028			0.195			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	2.73			2.49			2.98			2.70			
Capacity, Delay and Level	of Servic	e											
Flow Rate, v (veh/h)	118			303			20			149			
Capacity	761			803			722			766			
95% Queue Length, Q ₉₅ (veh)	0.5			1.8			0.1			0.7			
Control Delay (s/veh)	8.6			10.2			8.1			8.8			
Level of Service, LOS	А			В			А			А			
Approach Delay (s/veh)		8.6			10.2			8.1		8.8			
Approach LOS		А			В			Α		А			
Intersection Delay, s/veh LOS			9	.5					,	A			

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust Grove and Hubbard										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	9/16/2019	East/West Street	Hubbard Rd										
Analysis Year	2019	North/South Street	Locust Grove Rd										
Time Analyzed	Existing PM	Peak Hour Factor	0.93										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Vehicle Volumes and Adj	justme	nts																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)		2	9	4		8	11	0		2	16	3		0	64	7		
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3		
Proportion Time Blocked																		
Percent Grade (%))				0			
Right Turn Channelized																		
Median Type Storage				Undi	ivided	ided												
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)	T	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2		
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3		
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33		
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)		2				9					23				76			
Capacity, c (veh/h)		1601				1598					865				855			
v/c Ratio		0.00				0.01					0.03				0.09			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1				0.3			
Control Delay (s/veh)		7.3				7.3					9.3				9.6			
Level of Service (LOS)		А				Α					Α				А			
Approach Delay (s/veh)		1	.0		3.1				9.3				9.6					
Approach LOS											4		А					

Generated: 10/21/2019 2:26:04 PM

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust Grove and Deer Fla										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	9/16/2019	East/West Street	Deer Flat										
Analysis Year	2019	North/South Street	Locust Grove Rd										
Time Analyzed	Existing PM Peak Hour	Peak Hour Factor	0.88										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Approach	T	Facth	ound			Westk	oound			North	hound		Southbound			
11																
Movement	U	L	Т	R	-	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		23	40	1		1	183	4		0	7	1		5	30	66
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	\top	26				1					9				115	
Capacity, c (veh/h)		1352				1555					621				728	
v/c Ratio		0.02				0.00					0.01				0.16	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.0				0.6	
Control Delay (s/veh)		7.7				7.3					10.9				10.9	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)		2.9				0.0			10.9				10.9			
Approach LOS									В				В			

Generated: 10/21/2019 2:21:38 PM

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other PHF Jurisdiction ACHD Time Period AM Peak 0.91 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 7:00 Meridian and Hubbard File Name Meridian&Hubbard-AM-2025Bkgrd.xus Intersection **Project Description** 2025 AM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement R L R L R L R 5 14 404 Demand (v), veh/h 214 36 22 9 11 1085 5 16 52 **Signal Information** Ж وذلك Cycle, s 90.0 Reference Phase 2 542 Offset, s 0 Reference Point End 4.6 29.1 0.6 32.9 Green 1.3 1.6 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 13.9 41.7 5.3 33.1 5.6 36.9 6.1 37.5 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g_s), s 9.5 2.3 2.4 29.2 2.6 11.1 Green Extension Time (g_e), s 0.4 0.0 0.0 0.0 0.0 3.6 0.0 3.7 Phase Call Probability 1.00 0.22 0.26 1.00 0.36 1.00 0.00 0.00 0.03 0.01 0.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 235 64 10 21 12 599 598 18 254 247 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1734 1767 1638 1767 1856 1852 1767 1856 1781 7.5 2.0 0.3 8.0 0.4 27.2 27.2 0.6 9.0 Queue Service Time (g_s), s 9.1 Cycle Queue Clearance Time (q c), s 7.5 2.0 0.3 8.0 0.4 27.2 27.2 0.6 9.0 9.1 0.32 0.39 Green Ratio (g/C) 0.46 0.42 0.34 0.38 0.37 0.37 0.37 0.37 Capacity (c), veh/h 708 726 534 529 332 678 677 151 690 662 Volume-to-Capacity Ratio (X) 0.332 0.088 0.019 0.039 0.036 0.884 0.884 0.116 0.369 0.372 Back of Queue (Q), ft/ln (95 th percentile) 131.6 37.1 6.2 14.4 440 429.1 10.2 172.4 163.2 7 Back of Queue (Q), veh/ln (95 th percentile) 5.1 1.4 0.2 0.6 0.3 17.2 17.2 0.4 6.7 6.5 Queue Storage Ratio (RQ) (95 th percentile) 1.32 0.00 0.06 0.00 0.02 0.00 0.00 0.03 0.00 0.00 Uniform Delay (d 1), s/veh 15.5 15.8 19.9 20.9 17.9 26.8 26.8 21.2 20.6 20.6 Incremental Delay (d 2), s/veh 0.1 0.2 0.0 0.1 0.0 1.6 1.6 0.1 0.1 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 15.6 16.0 19.9 21.0 17.9 28.3 28.3 21.4 20.7 20.7 Level of Service (LOS) В В В С В С С С С С 15.7 В 20.7 С 28.2 С 20.7 С Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 24.4 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.27 В 2.28 В 1.91 1.91 В В Bicycle LOS Score / LOS 0.98 Α 0.54 Α 1.49 Α 0.92 Α

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Lake Hazel								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Lake Hazel Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.94								
Time Analyzed	2025 AM Peak Hour Bkgrd										
Project Description	Ledgestone South										

Vehicle Volume and Adjust	ments											
Approach		Eastbound		,	Westbound	ł	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	26	446	5	15	283	82	5	163	18	59	55	11
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	507			404			198			133		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and Se	rvice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.451			0.359			0.176			0.118		
Final Departure Headway, hd (s)	5.96			6.03			6.99			7.32		
Final Degree of Utilization, x	0.841			0.677			0.384			0.271		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	3.96			4.03			4.99			5.32		
Capacity, Delay and Level o	f Servic	е										
Flow Rate, v (veh/h)	507			404			198			133		
Capacity	604			597			515			492		
95% Queue Length, Q ₉₅ (veh)	9.0			5.2			1.8			1.1		
Control Delay (s/veh)	32.6			20.8			14.3			13.0		
Level of Service, LOS	D			С			В			В		
Approach Delay (s/veh)		32.6			20.8			14.3		13.0		
Approach LOS		D	_	С			В				В	
Intersection Delay, s/veh LOS			23	3.7			C					

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Columbia								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Columbia Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.90								
Time Analyzed	2025 AM Peak Hour Bkgrd										
Project Description	Ledgestone South										

Vehicle Volume and Adjust	ments											
Approach		Eastbound		,	Westbound	t	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	T	R	L	Т	R	L	Т	R
Volume	95	339	6	6	115	24	6	68	11	28	21	25
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	489			161			94			82		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and Se	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.435			0.143			0.084			0.073		
Final Departure Headway, hd (s)	4.71			4.98			5.61			5.57		
Final Degree of Utilization, x	0.639			0.223			0.147			0.127		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	2.71			2.98			3.61			3.57		
Capacity, Delay and Level o	f Servic	е										
Flow Rate, v (veh/h)	489			161			94			82		
Capacity	765			723			642			646		
95% Queue Length, Q ₉₅ (veh)	4.7			0.8			0.5			0.4		
Control Delay (s/veh)	15.7			9.4			9.6			9.4		
Level of Service, LOS	С			Α			Α			Α		
Approach Delay (s/veh)		15.7			9.4			9.6			9.4	
Approach LOS	C A				A A							
Intersection Delay, s/veh LOS		13.1					В					

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust Grove and Hubbard								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	9/16/2019	East/West Street	Hubbard Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Time Analyzed	2025 AM Peak Hour Bkgrd	Peak Hour Factor	0.90								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Ledgestone South										

Vehicle Volumes and Ad	T				Т	\A/!				NI			Courthbound				
Approach	_	Eastb	ound			West	oound			Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		21	27	6		1	16	3		1	61	2		2	23	11	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%))		0				
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		23				1					71				40		
Capacity, c (veh/h)		1588				1568					779				840		
v/c Ratio		0.01				0.00					0.09				0.05		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.3				0.1		
Control Delay (s/veh)		7.3				7.3					10.1				9.5		
Level of Service (LOS)		А				Α					В				А		
Approach Delay (s/veh)		2.9				0	.4			1().1		9.5				
Approach LOS									В					A			

Generated: 10/21/2019 2:26:49 PM

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust Grove and Deer Fla								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	9/16/2019	East/West Street	Deer Flat								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Time Analyzed	2025 AM Peak Hour Bkgrd	Peak Hour Factor	0.90								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Ledgestone South										

Vehicle Volumes and Adju	ıstme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		41	222	11		1	74	6		5	21	5		5	7	19	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)										()			(0		
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)		46				1					34				34		
Capacity, c (veh/h)		1500				1300					525				703		
v/c Ratio		0.03				0.00					0.07				0.05		
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.2				0.2		
Control Delay (s/veh)		7.5				7.8					12.3				10.4		
Level of Service (LOS)		A				А					В				В		
Approach Delay (s/veh)	1.3				0	.1		12.3				10.4					
Approach LOS								В			В						

Generated: 10/21/2019 2:22:46 PM

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other PHF 0.95 Jurisdiction ACHD Time Period ΡМ **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 5:00 Meridian and Hubbard File Name Meridian&Hubbard-PM-2025Bkgrd.xus Intersection **Project Description** 2025 PM Peak Bkgrd WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 33 Demand (v), veh/h 111 11 45 10 10 36 607 8 15 1302 339 **Signal Information** J. Cycle, s 90.0 Reference Phase 2 542 Offset, s 0 Reference Point Begin 1.0 Green 1.4 15.6 2.0 1.7 48.3 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.4 24.7 5.4 19.6 7.7 54.0 6.0 52.3 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 6.7 2.4 2.8 10.5 2.4 42.6 Green Extension Time (g_e), s 0.1 0.0 0.0 0.0 0.0 6.8 0.0 5.7 Phase Call Probability 0.95 0.23 0.61 1.00 0.33 1.00 0.00 0.00 0.92 0.01 0.30 Max Out Probability 0.31 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 117 59 11 45 38 324 323 16 876 851 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1612 1767 1630 1767 1856 1847 1767 1856 1725 4.7 2.6 0.4 2.1 8.0 0.4 37.3 40.6 Queue Service Time (g_s), s 8.5 8.5 Cycle Queue Clearance Time (q c), s 4.7 2.6 0.4 2.1 8.0 8.5 8.5 0.4 37.3 40.6 0.27 0.23 0.56 Green Ratio (g/C) 0.19 0.17 0.58 0.56 0.56 0.54 0.54 Capacity (c), veh/h 408 370 339 283 176 1031 1026 460 996 926 Volume-to-Capacity Ratio (X) 0.286 0.159 0.031 0.160 0.215 0.315 0.315 0.034 0.880 0.919 Back of Queue (Q), ft/In (95 th percentile) 88.1 49.9 8.4 42 17 145.7 141.7 5.9 570 587 Back of Queue (Q), veh/ln (95 th percentile) 3.4 2.0 0.3 1.6 0.7 5.7 5.7 0.2 22.3 23.5 Queue Storage Ratio (RQ) (95 th percentile) 0.88 0.00 80.0 0.00 0.06 0.00 0.00 0.02 0.00 0.00 Uniform Delay (d 1), s/veh 26.0 27.7 29.8 31.6 18.8 10.8 10.8 9.3 18.3 19.1 Incremental Delay (d 2), s/veh 0.1 0.9 0.0 1.2 0.2 0.1 0.1 0.0 6.0 9.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 26.1 28.7 29.8 32.8 19.0 10.8 10.8 9.3 24.3 28.8 Level of Service (LOS) С С С С В В В Α С С 27.0 С 32.2 С В 26.4 С Approach Delay, s/veh / LOS 11.3 Intersection Delay, s/veh / LOS 22.7 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.29 В 2.29 В 1.89 1.89 В В

Bicycle LOS Score / LOS

Α

1.05

Α

0.78

Α

В

1.93

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Lake Hazel								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Lake Hazel Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.90								
Time Analyzed	2025 PM Peak Hour Bkgrd										
Project Description	Ledgestone South										

Vehicle Volume and Adjust	ments											
Approach		Eastbound		,	Westbound	t	ı	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	13	314	5	19	447	124	7	85	10	120	250	40
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	369			656			113			456		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and Se	rvice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.328			0.583			0.101			0.405		
Final Departure Headway, hd (s)	7.61			7.25			8.84			7.39		
Final Degree of Utilization, x	0.779			1.321			0.278			0.935		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	5.61			5.25			6.84			5.39		
Capacity, Delay and Level o	f Servic	е										
Flow Rate, v (veh/h)	369			656			113			456		
Capacity	473			496			407			487		
95% Queue Length, Q ₉₅ (veh)	6.9			28.5			1.1			11.2		
Control Delay (s/veh)	32.6			180.0			15.2			53.4		
Level of Service, LOS	D			F			С			F		
Approach Delay (s/veh)		32.6			180.0			15.2			53.4	
Approach LOS	D			F			С	_	F			
Intersection Delay, s/veh LOS		98.0					F					

HCS7 All-Way Stop Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust_Columbia								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	09/16/2019	East/West Street	Columbia Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.95								
Time Analyzed	2025 PM Peak Hour Bkgrd										
Project Description	Ledgestone South										

Vehicle Volume and Adjust	ments											
Approach		Eastbound	ļ	,	Westbound	k	1	Northboun	d		Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	33	143	5	15	404	45	2	21	8	54	103	54
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	191			488			33			222		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.169			0.434			0.029			0.197		
Final Departure Headway, hd (s)	5.42			4.95			6.04			5.65		
Final Degree of Utilization, x	0.287			0.672			0.055			0.349		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	3.42			2.95			4.04			3.65		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	191			488			33			222		
Capacity	664			727			596			637		
95% Queue Length, Q ₉₅ (veh)	1.2			5.2			0.2			1.6		
Control Delay (s/veh)	10.6			17.5			9.4			11.7		
Level of Service, LOS	В			С			А			В		
Approach Delay (s/veh)		10.6			17.5			9.4		11.7		
Approach LOS		В			С		A			В		
Intersection Delay, s/veh LOS			14	1.4						В		

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust Grove and Hubbard								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	9/16/2019	East/West Street	Hubbard Rd								
Analysis Year	2025	North/South Street	Locust Grove Rd								
Time Analyzed	2025 PM Peak Hour Bkgrd	Peak Hour Factor	0.93								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Ledgestone South										

Vehicle Volumes and Ad	justme	nts															
Approach	T	Eastb	ound			Westl	oound		Northbound					South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		3	14	18		11	22	1		13	27	5		1	112	18	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%))				0		
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	T	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T	3				12					48				141		
Capacity, c (veh/h)		1583				1571					790				820		
v/c Ratio		0.00				0.01					0.06				0.17		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.6		
Control Delay (s/veh)		7.3				7.3					9.9				10.3		
Level of Service (LOS)		А				А					Α				В		
Approach Delay (s/veh)		0.6				2.4				9.9				10.3			
Approach LOS									A				В				

Generated: 10/21/2019 2:27:50 PM

	HCS7 Two-Way Stop-Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust Grove and Deer Fla									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	9/16/2019	East/West Street	Deer Flat									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Time Analyzed	2025 PM Peak Hour Bkgrd	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Ledgestone South											

Vehicle Volumes and Adj	ustme	nts																	
Approach		Eastb	ound			Westl	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0			
Configuration			LTR				LTR				LTR				LTR				
Volume (veh/h)		29	66	2		2	306	5		1	10	2		7	48	93			
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3			
Proportion Time Blocked																			
Percent Grade (%)										()			(0				
Right Turn Channelized																			
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2			
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23			
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3			
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33			
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		32				2					14				164				
Capacity, c (veh/h)		1208				1517					488				588				
v/c Ratio		0.03				0.00					0.03				0.28				
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.1				1.1				
Control Delay (s/veh)		8.1				7.4					12.6				13.5				
Level of Service (LOS)		A				А			В						В				
Approach Delay (s/veh)		2.6				0	.1		12.6 13.5			3.5							
Approach LOS									B B				В						

Generated: 10/21/2019 2:23:29 PM

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other AM Peak PHF Jurisdiction ACHD Time Period 0.91 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1> 7:00 Meridian and Hubbard File Name Meridian&Hubbard-AM-2025Total.xus Intersection **Project Description** 2025 AM Peak Total WB **Demand Information** EB NB SB Approach Movement R L R R R 5 404 Demand (v), veh/h 214 36 22 21 98 11 1085 9 44 53 **Signal Information** Ж وذلك Cycle, s 90.0 Reference Phase 2 542 Offset, s 0 Reference Point End Green 2.6 3.6 2.6 33.0 26.5 1.6 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 14.2 38.1 6.6 30.5 5.6 37.0 8.2 39.7 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g_s), s 9.9 2.8 2.4 29.4 3.5 10.8 Green Extension Time (g_e), s 0.4 0.0 0.0 0.0 0.0 3.7 0.0 3.7 Phase Call Probability 1.00 0.44 0.26 1.00 0.70 1.00 0.00 0.00 0.01 0.50 0.00 Max Out Probability 0.03 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 235 64 23 113 12 602 600 48 255 247 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1734 1767 1584 1767 1856 1850 1767 1856 1780 7.9 2.1 8.0 4.9 0.4 27.4 27.4 8.7 8.8 Queue Service Time (g_s), s 1.5 Cycle Queue Clearance Time (q c), s 7.9 2.1 8.0 4.9 0.4 27.4 27.4 1.5 8.7 8.8 0.29 0.42 Green Ratio (g/C) 0.43 0.38 0.32 0.38 0.37 0.37 0.40 0.40 Capacity (c), veh/h 586 658 523 467 357 681 679 192 735 705 Volume-to-Capacity Ratio (X) 0.401 0.097 0.044 0.242 0.034 0.884 0.884 0.252 0.347 0.350 Back of Queue (Q), ft/In (95 th percentile) 139.7 40.3 14.9 88.9 6.9 441.6 430.3 26.6 164.3 155.7 Back of Queue (Q), veh/ln (95 th percentile) 5.5 1.6 0.6 3.5 0.3 17.2 17.2 1.0 6.4 6.2 Queue Storage Ratio (RQ) (95 th percentile) 1.40 0.00 0.15 0.00 0.02 0.00 0.00 0.09 0.00 0.00 20.4 Uniform Delay (d 1), s/veh 17.1 18.0 20.8 24.1 17.5 26.7 26.7 19.0 19.0 Incremental Delay (d 2), s/veh 0.2 0.3 0.0 1.2 0.0 1.8 1.8 0.3 0.1 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 17.3 18.3 20.9 25.3 17.6 28.4 28.5 20.6 19.1 19.2 Level of Service (LOS) В В С С В С С С В В 24.6 17.5 В С 28.3 С 19.3 В Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 24.4 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.27 В 2.28 В 1.91 1.91 В В

Bicycle LOS Score / LOS

Α

1.49

Α

0.98

Α

Α

0.94

	HCS7 All-Way Sto	op Control Report	
General Information		Site Information	
Analyst	RAB	Intersection	Locust_Lake Hazel
Agency/Co.	WHPacific	Jurisdiction	
Date Performed	09/16/2019	East/West Street	Lake Hazel Rd
Analysis Year	2025	North/South Street	Locust Grove Rd
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.94
Time Analyzed	2025 AM Peak Hour Total		
Project Description	Ledgestone South		

Vehicle Volume and Adjustments												
Approach		Eastbound			Westbound	i	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	T	R	L	Т	R	L	Т	R
Volume	26	446	5	15	283	82	5	259	18	59	87	11
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	507			404			300			167		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.451			0.359			0.267			0.148		
Final Departure Headway, hd (s)	7.00			7.15			7.75			8.41		
Final Degree of Utilization, x	0.986			0.803			0.646			0.390		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	5.00			5.15			5.75			6.41		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	507			404			300			167		
Capacity	514			504			464			428		
95% Queue Length, Q ₉₅ (veh)	13.4			7.6			4.5			1.8		
Control Delay (s/veh)	62.7			33.2			23.8			16.7		
Level of Service, LOS	F			D			С			С		
Approach Delay (s/veh)		62.7			33.2			23.8		16.7		
Approach LOS		F			D		С			С		
Intersection Delay, s/veh LOS			40	0.0			E					

	HCS7 All-Way Sto	op Control Report	
General Information		Site Information	
Analyst	RAB	Intersection	Locust_Columbia
Agency/Co.	WHPacific	Jurisdiction	
Date Performed	09/16/2019	East/West Street	Columbia Rd
Analysis Year	2025	North/South Street	Locust Grove Rd
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.90
Time Analyzed	2025 AM Peak Hour Total		
Project Description	Ledgestone South		

Vehicle Volume and Adjustments												
Approach	T	Eastbound		,	Westbound	i	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	T	R	L	Т	R	L	Т	R
Volume	95	339	6	6	115	24	6	164	11	28	53	25
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	489			161			201			118		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.435			0.143			0.179			0.105		
Final Departure Headway, hd (s)	5.24			5.63			5.94			6.07		
Final Degree of Utilization, x	0.712			0.252			0.332			0.198		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	3.24			3.63			3.94			4.07		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	489			161			201			118		
Capacity	687			640			606			593		
95% Queue Length, Q ₉₅ (veh)	6.0			1.0			1.4			0.7		
Control Delay (s/veh)	20.1			10.5			11.9			10.6		
Level of Service, LOS	С			В			В			В		
Approach Delay (s/veh)		20.1			10.5			11.9		10.6		
Approach LOS		С			В		В			В		
Intersection Delay, s/veh LOS			15	5.6			C					

	HCS7 Two-Way Stop	o-Control Report								
General Information		Site Information								
Analyst	RAB	Intersection	Locust Grove and Hubbard							
Agency/Co.	WHPacific	Jurisdiction								
Date Performed	9/16/2019	East/West Street	Hubbard Rd							
Analysis Year	2025	North/South Street	Locust Grove Rd							
Time Analyzed	2025 AM Peak Hour Total	Peak Hour Factor	0.90							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Ledgestone South									

Vehicle Volumes and Adj	justme	nts															
Approach		Eastk	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		33	39	6		9	20	3		1	145	26		2	51	15	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)										()			(0		
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		37				10					191				76		
Capacity, c (veh/h)		1582				1550					738				750		
v/c Ratio		0.02				0.01					0.26				0.10		
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					1.0				0.3		
Control Delay (s/veh)		7.3				7.3					11.6				10.3		
Level of Service (LOS)		A				Α			В						В		
Approach Delay (s/veh)		3.2				2	.1	•	11.6			-	10.3				
Approach LOS									l	В			ı	В			

Generated: 10/21/2019 2:28:44 PM

	HCS7 Two-Way Stop-Control Report											
General Information		Site Information										
Analyst	RAB	Intersection	Locust Grove and Deer Fla									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	9/16/2019	East/West Street	Deer Flat									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Time Analyzed	2025 AM Peak Hour Total	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Ledgestone South											

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		41	222	11		1	74	6		5	25	5		5	19	19
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%))			()	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		46				1					39				48	
Capacity, c (veh/h)		1500				1300					518				627	
v/c Ratio		0.03				0.00					0.08				0.08	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.2				0.2	
Control Delay (s/veh)		7.5				7.8					12.5				11.2	
Level of Service (LOS)		A				А					В				В	
Approach Delay (s/veh)	1.3 0.1					.1		12.5 11.2								
Approach LOS									В В							

Generated: 10/21/2019 2:24:12 PM

	HCS7 Two-Way Stop	o-Control Report									
General Information		Site Information									
Analyst	RAB	Intersection	Hubbard and Stroebel								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	10/16/2019	East/West Street	Hubbard								
Analysis Year	2025	North/South Street	Stroebel								
Time Analyzed	AM Peak Hour Total	Peak Hour Factor	0.92								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Ledgestone South										

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			57	32		8	28			96		24				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T					9					130					
Capacity, c (veh/h)						1490					881					
v/c Ratio						0.01					0.15					
95% Queue Length, Q ₉₅ (veh)						0.0					0.5					
Control Delay (s/veh)						7.4					9.8					
Level of Service (LOS)						А					Α					
Approach Delay (s/veh)						1	.7		9.8			-		-	•	_
Approach LOS									A							

Generated: 10/21/2019 2:18:51 PM

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RAB	Intersection	Locust Grove and E Access								
Agency/Co.	WHPacific	Jurisdiction									
Date Performed	10/16/2019	East/West Street	E Access								
Analysis Year	2025	North/South Street	Locust Grove								
Time Analyzed	AM Peak Hour Total	Peak Hour Factor	0.92								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	Ledgestone South										

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		108		12						4	68				30	36
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			130							4						
Capacity, c (veh/h)			868							1522						
v/c Ratio			0.15							0.00						
95% Queue Length, Q ₉₅ (veh)			0.5		Ì			Ì		0.0			Ì		Ì	
Control Delay (s/veh)			9.9							7.4						
Level of Service (LOS)			А							А						
Approach Delay (s/veh)		9.9				0.4										
Approach LOS		A														

Generated: 10/21/2019 2:30:57 PM

HCS7 Signalized Intersection Results Summary General Information Intersection Information WHPacific Duration, h 0.25 Agency Analyst K Baker Analysis Date 8/23/2019 Area Type Other AM Peak PHF Jurisdiction ACHD Time Period 0.95 **Urban Street** Meridian Rd Analysis Year 2025 Analysis Period 1>5:00 Meridian and Hubbard File Name Meridian&Hubbard-PM-2025Total.xus Intersection **Project Description** 2025 PM Peak Total WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 88 Demand (v), veh/h 111 11 45 18 10 36 607 21 109 1302 343 **Signal Information** Ж وذلك Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point Begin Green 2.3 0.2 3.7 2.0 15.5 46.5 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.4 23.6 6.3 19.5 7.7 50.5 9.7 52.4 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.1 3.1 3.1 Queue Clearance Time (g_s), s 6.7 2.8 2.9 11.5 4.6 42.7 Green Extension Time (g_e), s 0.1 0.0 0.0 0.0 0.0 6.9 0.0 5.7 Phase Call Probability 0.95 0.38 0.61 1.00 0.94 1.00 0.00 0.00 0.99 0.02 1.00 0.31 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 117 59 19 103 38 332 329 115 879 853 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1612 1767 1597 1767 1856 1833 1767 1856 1724 4.7 2.7 8.0 5.1 0.9 9.5 2.6 37.4 40.7 Queue Service Time (g_s), s 9.5 Cycle Queue Clearance Time (q c), s 4.7 2.7 8.0 5.1 0.9 9.5 9.5 2.6 37.4 40.7 0.27 0.22 0.52 0.58 Green Ratio (g/C) 0.20 0.17 0.56 0.52 0.54 0.54 946 Capacity (c), veh/h 353 351 346 274 170 958 506 999 928 Volume-to-Capacity Ratio (X) 0.331 0.168 0.055 0.376 0.223 0.347 0.347 0.227 0.880 0.919 Back of Queue (Q), ft/In (95 th percentile) 88.6 51 15 103.1 17.1 168.6 162.9 42.3 569.5 587.2 Back of Queue (Q), veh/ln (95 th percentile) 3.5 2.0 0.6 4.0 0.7 6.6 6.5 1.7 22.2 23.5 Queue Storage Ratio (RQ) (95 th percentile) 0.89 0.00 0.15 0.00 0.06 0.00 0.00 0.14 0.00 0.00 Uniform Delay (d 1), s/veh 26.3 28.6 29.3 33.0 19.7 12.8 12.8 9.1 18.2 19.0 Incremental Delay (d 2), s/veh 0.2 1.0 0.0 3.9 0.2 0.1 0.1 0.1 6.0 9.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 26.5 29.6 29.4 36.9 19.9 12.9 12.9 9.2 24.2 28.8 Level of Service (LOS) С С С D В В В Α С С 27.5 С 35.7 13.3 В 25.4 С Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 23.0 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.29 В 2.29 В 1.89 1.89 В В

Bicycle LOS Score / LOS

Α

1.06

Α

0.78

Α

В

2.01

HCS7 All-Way Stop Control Report												
General Information		Site Information										
Analyst	RAB	Intersection	Locust_Lake Hazel									
Agency/Co.	WHPacific	Jurisdiction										
Date Performed	09/16/2019	East/West Street	Lake Hazel Rd									
Analysis Year	2025	North/South Street	Locust Grove Rd									
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.90									
Time Analyzed	2025 PM Peak Hour Total											
Project Description	Ledgestone South											

Vehicle Volume and Adjust	tments											
Approach		Eastbound		,	Westbound	d	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	13	314	5	19	447	124	7	148	10	120	357	40
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	369			656			183			574		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.328			0.583			0.163			0.511		
Final Departure Headway, hd (s)	8.23			7.82			9.17			7.93		
Final Degree of Utilization, x	0.843			1.423			0.467			1.266		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	6.23			5.82			7.17			5.93		
Capacity, Delay and Level	of Servic	е										
Flow Rate, v (veh/h)	369			656			183			574		
Capacity	437			461			393			454		
95% Queue Length, Q ₉₅ (veh)	8.2			32.0			2.4			24.0		
Control Delay (s/veh)	42.0			224.6			19.9			160.8		
Level of Service, LOS	E			F			С			F		
Approach Delay (s/veh)		42.0			224.6			19.9		160.8		
Approach LOS		E			F		С			F		
Intersection Delay, s/veh LOS		145.2								F		

	HCS7 All-Way Stop Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust_Columbia										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	09/16/2019	East/West Street	Columbia Rd										
Analysis Year	2025	North/South Street	Locust Grove Rd										
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.95										
Time Analyzed	2025 PM Peak Hour Total												
Project Description	Ledgestone South												

Vehicle Volume and Adjust	ments											
Approach		Eastbound		,	Westbound	t	1	Northboun	d	9	Southboun	d
Movement	L	Т	R	L	T	R	L	Т	R	L	Т	R
Volume	33	143	5	15	404	45	2	84	8	54	210	120
% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	191			488			99			404		
Percent Heavy Vehicles	3			3			3			3		
Departure Headway and Se	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.169			0.434			0.088			0.359		
Final Departure Headway, hd (s)	6.69			5.99			7.09			6.17		
Final Degree of Utilization, x	0.354			0.812			0.195			0.693		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	4.69			3.99			5.09			4.17		
Capacity, Delay and Level o	f Servic	е										
Flow Rate, v (veh/h)	191			488			99			404		
Capacity	538			601			508			584		
95% Queue Length, Q ₉₅ (veh)	1.6			8.2			0.7			5.4		
Control Delay (s/veh)	13.3			29.8			11.8			21.9		
Level of Service, LOS	В			D			В			С		
Approach Delay (s/veh)		13.3			29.8			11.8		21.9		
Approach LOS	В				D			В	_		С	
Intersection Delay, s/veh LOS		22.9					C					

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust Grove and Hubbard										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	9/16/2019	East/West Street	Hubbard Rd										
Analysis Year	2025	North/South Street	Locust Grove Rd										
Time Analyzed	2025 PM Peak Hour Total	Peak Hour Factor	0.93										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		11	22	18		38	36	1		13	82	21		1	206	31
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)))	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		12				41					125				256	
Capacity, c (veh/h)		1563				1559					691				712	
v/c Ratio		0.01				0.03					0.18				0.36	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.7				1.6	
Control Delay (s/veh)		7.3				7.4					11.4				12.9	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)	1.6 3.8						-		1 ⁻	1.4			12	2.9		
Approach LOS										В				3		

Generated: 10/21/2019 2:30:11 PM

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Locust Grove and Deer Fla										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	9/16/2019	East/West Street	Deer Flat										
Analysis Year	2025	North/South Street	Locust Grove Rd										
Time Analyzed	2025 PM Peak Hour Total	Peak Hour Factor	0.90										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Vehicle Volumes and Adju	ıstme	nts																	
Approach		Eastb	ound			Westl	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0			
Configuration			LTR				LTR				LTR				LTR				
Volume (veh/h)		29	66	2		2	306	5		1	24	2		7	56	93			
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3			
Proportion Time Blocked																			
Percent Grade (%)										()			()				
Right Turn Channelized																			
Median Type Storage				Undi	vided														
Critical and Follow-up He	adwa	ys																	
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2			
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23			
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3			
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33			
Delay, Queue Length, and	Leve	l of Se	ervice																
Flow Rate, v (veh/h)		32				2					30				173				
Capacity, c (veh/h)		1208				1517					475				579				
v/c Ratio		0.03				0.00					0.06				0.30				
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.2				1.3				
Control Delay (s/veh)		8.1				7.4					13.1				13.9				
Level of Service (LOS)		Α				Α					В				В				
Approach Delay (s/veh)	2.6 0.1							13	3.1		13.9								
Approach LOS									В				В						

Generated: 10/21/2019 2:24:52 PM

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	RAB	Intersection	Hubbard and Stroebel										
Agency/Co.	WHPacific	Jurisdiction											
Date Performed	10/16/2019	East/West Street	Hubbard										
Analysis Year	2025	North/South Street	Stroebel										
Time Analyzed	PM Peak Hour Total	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Ledgestone South												

Vehicle Volumes and Ad	iustma	nts														
Approach	Justine		oound		Т	Mostl	oound		1	North	bound			South	bound	
															_	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			34	107		27	53			63		16				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Т					4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)	Т			П		29					86					
Capacity, c (veh/h)						1421					792					
v/c Ratio						0.02					0.11					
95% Queue Length, Q ₉₅ (veh)						0.1					0.4					
Control Delay (s/veh)						7.6					10.1					
Level of Service (LOS)						Α					В					
Approach Delay (s/veh)						2	.7			1(10.1					
Approach LOS									В							

Generated: 10/21/2019 2:19:46 PM

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	RAB	Intersection	Locust Grove and E Access					
Agency/Co.	WHPacific	Jurisdiction						
Date Performed	10/16/2019	East/West Street	E Access					
Analysis Year	2025	North/South Street	Locust Grove					
Time Analyzed	PM Peak Hour Total	Peak Hour Factor	0.92					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Ledgestone South							

Vehicle Volumes and Adj	ustme	nts															
Approach		Eastk	ound			Westl	oound			North	bound			Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0	
Configuration			LR							LT						TR	
Volume (veh/h)		71		8						14	44				141	121	
Percent Heavy Vehicles (%)		3		3						3							
Proportion Time Blocked																	
Percent Grade (%)			0														
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.43		6.23						4.13							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.53		3.33						2.23							
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)			86							15							
Capacity, c (veh/h)			695							1272							
v/c Ratio			0.12							0.01							
95% Queue Length, Q ₉₅ (veh)		Ì	0.4		Ì			Ì	Ì	0.0			Ì				
Control Delay (s/veh)			10.9							7.9							
Level of Service (LOS)			В							А							
Approach Delay (s/veh)		10	0.9	-		•	-			2	.0			•			
Approach LOS			В														

Generated: 10/21/2019 2:31:45 PM

	TRAFFIC SIGNAL WARRANTS												
City	//Town: Kuna,	ID			Anal	ysis Per	formed	Ву:	RB				
C	County: ADA Co	unty			Date A	nalysis	Perform	ed:	10/15/2019				
D	ivision:			Pro	oject Nu	ımber if	Applical	ole:					
Data	a Date:				V	/eather (Conditio	ns:					
Major	Route: Lak	re Hazel	1		А	ppr. Lan	es: 1	C	Critical A	pproach	n Speed	(mph):	50
-		ıst Grov	re e			 ppr. Lan					•	(1 /	
	Volume Level Criteria 1. Is the critical speed of major street traffic > 70 km/h (40 mph)? X Yes No												
2. Is the intersection in a built-up area or isolated community of <10,000 population? Yes No If Question 1 or 2 above is answered "Yes", then use "70%" volume level X 70%													
WAR	RANT 1 - EIGHT-H	OUR \	/EHIC	ULAF	R VOL	<u>UME</u>							
War	rrant 1 is satisfied if Condition	A or Con	dition B i	is "100%	" satisfie	d.			Satisf	ied:	Yes	X	No
	rrant is also satisfied if both Co					%" satisfie	ed, given						•
	quate trials of other remedial i												
Ade	equate trial(s) of other re										Yes	X	No
	<u>List Remedial M</u>	easures	Triea (F	Required	1 tor 805	% Comb	ination (OT A & E	<u>3)</u>		l		
<u> </u>													
	Condition A - Minimu	m Vehi	icular \	/olume	& Co	<u>ndition</u>	B - Int						1
								100%	Satisfic	ed:	Yes	5 <u>X</u>	No
		(Used	if neithe	er Cond	lition A	or B is	satisfie	d) 80%	Satisfie	ed:	Yes	X	No
Ī		1				l		Eic	ght High	nest Ho	urs		
	(volumes in veh/hr)	Mini	mum R	equiren	nents								
	Approach Lanes	•	1		more	12 SM	MAN	Wo ?	SW	A SH	S AND S	MO'S	No 1
	Volume Level	100%	70%	100%	70%	KV.		^	ტ	Dr.	S	9	^
4 %	Both Approaches on Major Street	500	350	600	420	353	367	305	512	668	924	585	343
7 - 1A 00%	Highest Approach	450	405		4.40	405		440		0.45	440		450
W .	on Minor Street	150	105	200	140	125	127	113	204	315	410	258	159
	(volumes in veh/hr)	+		equiren									
	Approach Lanes Volume Level	100%	1 70%		more 70%								
	Both Approaches		70%										
W - 1B 100%	on Major Street	750	525	900	630	353	367	305	512	668	924	585	343
V - 100	Highest Approach	75	53	100	70	125	127	113	204	315	410	258	
-	on Minor Street	, ,	00	100		120		110	207	0,0	710		150
	(volumes in veh/hr) Minimum Requirements												159
	(volumes in veh/hr)	Mini	mum Ro										159
	(volumes in veh/hr) Approach Lanes	,	1	2 or	more								159
	(volumes in veh/hr) Approach Lanes Volume Level	100%	1 70%	2 or 100%	more 70%								
1A %	(volumes in veh/hr) Approach Lanes	,	1	2 or	more	353	367	305	512	668	924	585	343
W - 1A 80%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach	100% 400	70%	2 or 100% 480	70% 336		367			668		585	343
W - 1A 80%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	100% 400 120	70% 280 84	2 or 100% 480 160	70% 336 112	353 125		305 113	512 204		924 410		
W - 1A 80%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr)	100% 400 120 Minii	70% 280 84	2 or 100% 480 160 equiren	336 112		367			668		585	343
W - 1A 80%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street	100% 400 120 Minii	70% 280 84	2 or 100% 480 160 equiren	70% 336 112 nents more		367			668		585	343
	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level Both Approaches	100% 400 120 Minii	1 70% 280 84 mum Re 1 70%	2 or 100% 480 160 equiren 2 or 100%	336 112 nents more 70%	125	367 127	113	204	668	410	585 258	343 159
W - 1B W - 1A 80%	(volumes in veh/hr) Approach Lanes Volume Level Both Approaches on Major Street Highest Approach on Minor Street (volumes in veh/hr) Approach Lanes Volume Level	100% 400 120 Minii	70% 280 84 mum Ro	2 or 100% 480 160 equirem 2 or	70% 336 112 nents more		367			668		585	343

WARRANT 2 - FOUR-HOUR VEHICULAR VOLUME

Satisfied: X Yes No

If all four points lie above the appropriate line, then this warrant is satisfied.

	Fo	ur High	est Ho	urs
	Wa	Ma	PIM	Ma
(Volumes in veh/hr)	ر اج	4	2'	9
SUM of Both Approaches on Major Street	512	668	924	585
Highest Minor Street Approach	204	315	410	258

* Note: 115 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 80 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

* Note: 80 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 60 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

TRAFFIC SIGNAL WARRANTS **WARRANT 3 - PEAK HOUR VEHICULAR VOLUME** Applicable: X No This signal warrant sahll be applied only in unsual cases, such as office **X** No Satisfied: complexes, manufacturing plants, industrial complexes, or high-ocupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time period. Signalization shall be considered if a point lies above the appropriate line or the Delay criteria is met Unusual case(s) justifying this Warrant: Peak Hour Data Peak Major Minor Route Route Hour 5 PM 924 410

* Note: 150 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 100 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

* Note: 100 vph applies as the lower threshold volume for a minor route approach with two or more lanes and 75 vph applies as the lower threshold volume threshold for a minor route approach with one lane.

							3. Total Entering V	olume (v	eh/hr)	
4	1. Delay on Minor Ap	proach (v	ehicle-				Number of Ap	proaches	roaches	
4 ×	hours			2. Volume on Minor Approach (veh/hr)			3	4 or 1	more	
ILA TEI	Approaches Lanes	1	2	Approaches Lanes 1 2		No. of Approaches	3	4		
DE R	Delay Criteria	4.0	5.0	Volume Criteria	100	150	Volume Criteria	650	800	
3	Delay			Volume :		Volume	•			
	Fullfilled? Y	es X	NO	Fullfilled? Ye	s X	NO	Fullfilled? Y	es X	NO	

WARRANT 4 - PEDESTRIAN VOLUME

Satisfied:	lv
Jalioneu.	

S	X	Νc
S	^	1/10

Yes

Fulfilled?

Pedestrian Signal Location Criteria

The nearest traffic control device (signal or STOP sign) controlling traffic on the major route is more than 90m (300 ft) away:

If no above, will this proposed signal restrict the progressive movement of traffic?

X Yes

X No X

Vehicle volumes in veh/hr and Pedestrian volumnes in ped/hr SUM of Both Approaches on Major Route

Pedestrians crossing the Major Route

Four Greatest Hours Peak Hour

FIGURE W-4a: Criteria for 70% Volume Level, Four-Hour Volumes

^{*} Note: 107 pph applies as the lower threshold volume for the 100% Volume Level. 75 pph applies as the lower threshold volume for the 70% Volume Level.

FIGURE W-4b: Criteria for 70% Volume Level, Peak Hour Volume

* Note: 133 pph applies as the lower threshold volume for the 100% Volume Level. 93 pph applies as the lower threshold volume for the 70% Volume Level.

TRAFFIC SIGNAL WARRANTS		
NARRANT 5 - SCHOOL CROSSING Satisfied: Yes	s X	No
This warrant is intended for application where the fact that schoolchildren crossing the major route is the princip onsider installing a traffic control signal. For the purposes of this warrant, the word "schoolchildren" includes e brough high school students. This warrant is satisfied if all three of the criteria below are fulfilled after remedial ave been considered.	al reason lementar	to V
Any remedial measures implemented in or around the intersection to improve the safety of the students as not 4C.06 Warrant 5, School Crossing in the MUTCD:	ed in Sec	tion
Criteria	Fulfill	
1. Enter the number of schoolchildren crossing the major route along with the hour this occurs. The hour can be any 60 minute interval (ex 2:15 PM enter 2:15 - 3:15). Requires a minimum of 20 schoolchildren durning the any hour.	Yes	No X
Period The number of adequate gaps observed for each period and the number of minutes each period lasted. Requires one period to operate with fewer gaps than the number of minutes in the period. Period Minutes Gaps AM PM		x
Is the nearest traffic signal along the major route more than 90m (300 ft) from this crossing? Yes X No If the signal is within 90m (300 ft) of an existing signalize intersection, will it restrict progressive movement of traffic?		x
NARRANT 6 - COORDINATED SIGNAL SYSTEM Progressive movement in a coordinated signal system sometimes necessitates the installtion of traffic control signaters sections that would not otherwise be considered in order to maintain proper paltooning of vehicles. This was atisfied if the below criteria is satisfied as follows: criteria 1 is satisfied and either criteria 2 or 3 is satisfied.	gnals at	No
Criteria	Fulfill Yes	ed? No
 The inclusion of this proposed signal, into the coordinated system, does not result in a signal spacing of less than 305m (1,000 ft)? 		х
a. On a one-way street or a street that has traffic predominantly in one direction, are the adjacent traffic control signals so far apart that they do not provide the necessary degree of vehiclular platooning?		х
b. On a two-way street, do adjacent traffic control signals not provide the necessary degree of		Х

WARRANT 7	- CRASH	EXPERIEN	ICE
-----------	---------	-----------------	-----

Satisfied:	Yes	Х	No
	1.00		

This warrant is intended for application where the severity and frequency of crashes are the principal reasons to consider the installation of a traffic control signal. The need for a traffic control signal shall be considered if an engineering study finds that criteria 1, 2, and 3 are met.

Criteria						
 Adequate trial of alternatives with satisfactory observance and enforcement has fialed to reduce the crash frequency as shown below: 						
			x			
 How many crashes within the past 12 months? For the reported crashes, of types suseptible to correction by the must have occurred. 			х			
3. If Warrant 1A or Warrant 1B are 80 percent satisfied of the	e current values or if Warrant 4, Met	?				
4-hour or peak, is met at the 80 percent values.	Yes	No				
Warrant 1, Condition A, Minimum Vehicu	lar Volume (80 percent satisfied):	Χ				
Warrant 1, Condition B, Interruption of Continu	ous Traffic (80 percent satisfied):	Χ	v			
Warrant 4, Four-Ho	our Volume (80 percent satisfied):	X	^			
Warrant 4, Peak Ho	our Volume (80 percent satisfied):	Χ				

WARRANT 8 - ROADWAY NETWORK

Satisfied:		Yes	X	Ν
------------	--	-----	---	---

This warrant is used to encourage the concentration and organization of traffic flow on a roadway network. This warrant is satisfied if one of the following 2 criteria is met and both routes meet at least on of the characteristics of a Major Route below.

				Crite	ria				Me Yes	et? No	Fulfi Yes	lled? No
1.	Both of the criteria to the right are	a.	traffic volume du	e total existing, or immediately projected, entering uring the peak hour of a typical weekday. Requires 1,000 vehicles to be met.					х		v	
	required in order to be met.	b.	Based on an eng this location, me weekday? *		•					x		^
2.	Enter the total existing, or immediately projected, entering volume for each of any 5 hours of a non-normal business day. (Saturday or Sunday). 1,000 vph for each hour required.		d, entering ny 5 hours of a						← Hou	r		Y
								← Volume			^	

^{*} Supporting data required for verification of the projected 5 year traffic Warrants.

A major route, as used in this signal warrant, shall have at least one of the following characteristics:					Fulfilled?	
	Characteristics of Major Routes		Yes	No	Yes	No
1.	Is it a part of the street or highway system that serves as the principal	Major Route		Χ		
	roadway network for through traffic flow?	* Minor Route		Х		
2.	Does it include rural or suburban highways outside, entering, or traversing	Major Route		Х		v
	a city?	* Minor Route		X		^
3.	Does it appear as a major route on an official plan, such as a major street	Major Route		Х		
	plan in an urban area traffic and transportation study?	* Minor Route		Х		

^{*} This is a minor route, but for the purposes of this Warrant, shall be considered as the other major route.

Note: Supporting data shall be required to verify the routes meet one of the characteristics of a major route.

WARRANT 9 - INTERSECTION NEAR A GRADE CROSSING

Applicable							
	Yes		No				

The need for a traffic control signal may be considered if an intersection that is controlled by a STOP or YIELD sign has a rail crossing within 140 feet of the stop/yield line and the highest Equivalent Minor Approach Traffic value lies above the curve represented on the graph below.

Enter the distance value "D" from the STOP/YIELD bar to the track as shown below:

(One Approach Lane at the Track Crossing)

(Two or More Approach Lanes at the Track Crossing)

FIGURE W-9: Intersection Near a Grade Crossing
(One Approach Lane at the Track Crossing)

^{*} VPH after applying the adjustment factors for Rail, Bus, and Tractor-Trailer traffic 25 vph applies as the lower threshold volume

City/Town: County:	TRAFFIC SIC Kuna, ID ADA County	GNAL WARRANT SUN Analysis Performed By: Date Analysis Performed:	MMARY RB 10/15/2019
Division: Data Date:	,	Project Number if Applicable: Weather Conditions:	
Major Route:	Lake Hazel Locust Grove	Appr. Lanes: 1 Appr. Lanes: 1	Critical Approach Speed (mph):50
Warrant #1: Eigh	nt-Hour Vehicular Volu	ı <u>me</u>	SATISFIED Yes X No
1A - Minimum Ve 1B - Interruption	ehicular Volume: of Continuous Traffic:	80% Satisfied X Yes No Yes X No	100% Satisfied Yes X No Yes X No
	Any Remedial Measur	res Tried and their Outcome.	
Warrant #2: Four	r-Hour Vehicular Volur	<u>me</u>	X Yes No
Warrant #3: Peal	<u> Hour</u>		Yes X No
	The Unusual Case(s) that	Justifies the use of this Warrant	,
Warrant #4: Pede	estrian Volume		Yes X No
Warrant #5: Scho	ool Crossing		Yes X No
Any Rea	medial Measures Implemen	ted to improve the Safety of the	Students.
Warrant #6: Coo	rdinated Signal System	<u>L</u>	Yes X No
Warrant #7: Cras	h Experience		Yes X No
	•	t have failed to reduce crashes.	
Warrant #8: Road	dway Network		Yes X No
Warrant #9: Inte	rsection Near a Grade	Crossing	Yes X No
			
CONCLUSIONS		Warrants Satisfied	d: 2
Remarks:			

Figure 6 – Right-Turn Lane Guidelines for Two-Lane Roadways

The following data are required:

1. Advancing Volume (veh/hr) - The advancing volume is to include the right-turn, left-turn and through movements in the same direction as the right-turning vehicle.

- 2. Right-Turning Volume (veh/hr) The right-turning volume is the number of advancing vehicles turning right.
- 3. Operating Speed (mph) The greatest of anticipated operating speed, measured 85th percentile speed or posted speed.

Note: Right-turn lane is not needed for right-turn volume less than 10 vph. However, criteria other than volume, e.g. crash experience, may be used to justify a right-turn lane.

If the combination of major road approach volume and right-turn volume intersects above or to the right of the speed trend line corresponding to the major road operating speed, then a right-turn lane is appropriate.

Source: NCHRP Report 279 and 457

Adopted:

Revised:

Res. 469 (7/13/94)

7100 - 40 Res. 675 (1/29/03); Res. 904 (8/19/09); Ord. 217 (9/14/11); Ord. 232 (12/7/16); Ord. 233

(1/25/17); Ord. 238 (12/12/18)

Figure 2 – Left-Turn Lane Guidelines for Two-Lane Roads, 45 mph

The following data are required:

1. Opposing Volume (veh/hr) - VO - The opposing volume is to include only the right-turn and through movements in the opposite direction of the left turning vehicle.

- 2. Advancing Volume (veh/hr) VA The advancing volume is to include the right-turn, left-turn and through movements in the same direction as the left turning vehicle.
- 3. Operating Speed (mph) The greatest of anticipated operating speed, measured 85th percentile speed or posted speed.

4. Percentage of left turns in VA

Left-turn lane is not needed for left-turn volume less than 10 vph. However, criteria other than volume, such as crash experience, may be used to justify a left-turn lane.

The appropriate trend line is identified on the basis of the percentage of left-turns in the advancing volume, rounded up to the nearest percentage trend line. If the advancing and opposing volume combination intersects above or to the right of this trend line, a left-turn lane is appropriate.

Source: NCHRP Report 279 and 457

Adopted: Revised:

Res. 469 (7/13/94)

Res. 675 (1/29/03); Res. 904 (8/19/09); Ord. 217 (9/14/11); Ord. 232 (12/7/16); Ord. 233

(1/25/17); Ord. 238 (12/12/18)

-NO LEFT TURN REQUIRED

Figure 3 – Left-Turn Lane Guidelines for Two-Lane Roads, 50 mph

The following data are required:

12

- NO LOTTURN REDUITED

1. Opposing Volume (veh/hr) - VO - The opposing volume is to include only the right-turn and through movements in the opposite direction of the left-turning vehicle.

Advancing Volume (VA), veh/h

- 2. Advancing Volume (veh/hr) VA The advancing volume is to include the right-turn, left-turn and through movements in the same direction as the left-turning vehicle.
- 3. Operating Speed (mph) The greatest of anticipated operating speed, measured 85th percentile speed or posted speed.
- 4. Percentage of left-turns in VA

Left-turn lane is not needed for left-turn volume less than 10 vph. However, criteria other than volume, such as crash experience, may be used to justify a left-turn lane.

The appropriate trend line is identified on the basis of the percentage of left-turns in the advancing volume, rounded up to the nearest percentage trend line. If the advancing and opposing volume combination intersects above or to the right of this trend line, a left-turn lane is appropriate.

Source: NCHRP Report 279 and 457

Adopted: Revised:

Res. 469 (7/13/94)

Res. 675 (1/29/03); Res. 904 (8/19/09); Ord. 217 (9/14/11); Ord. 232 (12/7/16); Ord. 233

(1/25/17); Ord. 238 (12/12/18)

PLANT PALETTE

SYM	COMMON NAME	BOTANICAL NAME	SIZE
	VERGREEN TREES		
*	AUSTRIAN PINE BLACK HILLS SPRIKE BLIE SPRIKE MOONSLON JINIPER	PINIS NIGRA PICEA GLAUCA DEIGATA' PICEA PINISHIS 'SLAUCA' JUNFERIS SCOPILORIM MOONSLOW	6-0' HT B4B 6-0' HT B4B 6-0' HT B4B
	NORMAY SPRICE VANDERSYCLES PINE	PICEA ABIES PINO PLEXILIS VANDENHOLES	6-0' HT B4B
-	TREET TREES (CLASS III)		
Y	LONDON PLANETREE RED OAK	PLATANO × ACERIFOLIA GUERCUS RUBRA	2" CAL B4B
€.	TREET TREES (CLASS IV		
38	AUTUM PURPLE ASH SCYLINE HONEYLOCUST LITTLELEAP LINDEN AMERICAN SHEETGUM TULIP TREE	Fraxinus americana "Autum Purple" Gleditsia triacanthos inernis "Skycole" Tilia cordata Ligudamber Styraciplua Lirodendron Tilipipera	2" CAL B4B 2" CAL B4B 2" CAL B4B 2" CAL B4B 2" CAL B4B
4	PRINAMENTAL TREES (CLASS U		
\$	AMER MAPLE CHANTICLEER PEAR ROYAL RAINDROPS CRABAPPLE SPRINGSION CRABAPPLE	ACER GINNALA TILAME! PTRIS CALLERYANA ISLENS FORM! MALIG S. YES-KOR! MALIG SPRINGSHON!	2" CAL B4B 2" CAL B4B 2" CAL B4B
	HRUBS/ORNAMENTAL GRASSES/PERE	NIALS	
5	BLACE ETED SHAM BUE RIG JUNPER GREENIG HANCHIN RED FLORES, CARSET ROSE BUT FLORES, CARSET ROSE DIACRES, CARSET ROS	ELERCICIA FILLIDA MOLDSTRUM ALIFERRIA REZIDATALIS YILTON' MANDIA REPERS KOMA FLOREY CAMPETA MOMERIA MANDIA REPERS KOMA FLOREY CAMPETA MANDIA REPERS MANDIA REPERS MANDIA REPERS MANDIA REPERS REPERS MANDIA REPERS MANDIA REPERS MANDIA PORTINE THERALD IN GOLD' MANDIA PRANCIA PORTINE MANDIA PRANCIA NOLIFICIANO MANDIA PRANCIA NOLIFICAMO MANDIA PRANCIA NOLIFICAMO MANDIA PRANCIA NOLIFICAMO MANDIA MANDIA MOLDET BLUE MISCARRIO POLIFICAMO MISCARRIO MANDIA MISCARRIO POLIFICAMO MISCARRIO MISCARRIO POLIFICAMO MISCARRIO MISCARRIO POLIFICAMO MISCARRIO	1 6AL 24' OG 2 6AL 3 6AL 1 3 6AL 1 3 6AL 5 5 6AL 5 5 6AL 5 5 6AL 5 5 6AL 1 5 6AL 5 5 6AL 5 5 6AL 5 5 6AL 5 5 6AL
	LANN •••	6' VINYL LATTICE TOP FENCE ALONS PERIMETER PROPERTY LINES, COMMON LOTS, AND SIDE LOTS (TYP).	

NOTES

- ALL LANDSCAPE SHALL BE INSTALLED IN ACCORDANCE WITH KIMA CITY ORDINANCE REQUIREMENTS. ALL LOTS HILL COMPLY WITH KIMA CITY ORDINANCE REQUIRING ONE (I) TREE PER LOT (PROVIDED BY BUILDER AND/OR DEVELOPER.
- 2. ALL PLANTING AREAS TO BE WATERED WITH AN AUTOMATIC UNDERGROUND IRRIGATION SYSTEM.
- 5. TREES SHALL NOT DE PLANTED WITHIN THE ID-CLEAR ZONE OF ALL ACHO STORM DRAIN PIPE STRUCTURES, OR PACILITIES, SEEPAGE BEDS MUST DE PROTECTED PROM ANY AND ALL CONTAMINATION DURING THE CONSTRUCTION AND INSTILLATION OF THE LANDSCAPE INFORMATION SYSTEM ALL SPRIDS PLANTED OVER OR ADJACHT TO SEEPAGE DROPS TO HAVE A ROOT BALL THAT DOES NOT EXCEED 10° IN DIAMETER. NO LAME SOO TO DE PLACED OVER DRAINED SHALE AND INICIDOM (IP RESENT).
- 4. NO TREES SHALL IMPEDE THE 40 STREET AND DEPARTIRE VISION TRIANGLES AT ALL INTERSECTIONS. NO CONFIDENCE TREES OR SHRIPS OVER 3" HIGH AT MATERITY HILL BE LOCATED WITHIN HIGH DIGHT RIMINGLE OR ACHO ROW. AS TREES HATIRE, HIS CONRESS HAS BE REPORTED FOR PRINTS TREE CANOPIES TO MEET ACAD REQUIREMENTS FOR HANTANING CLEAR VISIOLITY WITHIN 40" STREET AND DETACTIVE VISION TRIANGLE. TRIES SHALL BE PLANTED NO CLOSET THAN 50" FROM \$100" PAINS.
- LAIDSCAPE AND TREES IN PRONT OF BUILDING LOTS ON INTERIOR STREETS TO BE COMPLETED DURING CONSTRUCTION OF THESE LOTS. TREE LOCATIONS MAY BE ALTERED TO ACCOMMODATE DRIVENAYS AND UTILITIES. TREES SHALL NOT BE 9-ANTED NATION FOR PAINTRY BRITISHS OR UTILITY LIBERS.
- 6. FAIR LET IS EDISCIPITATE AND RELECT TO SUSTITIONS OF SHARE SPECIES BY ONCE, QUEST TO CITY POSSISTED SPIC-APPROVAL PARTING BID DESIGN AND GARANTIES MAY BE ALTERED DIRECT BUILL EAT LANDSCAPE PLAN DESIGN. DALLAF AND RISE DASCETS TO BE REPORTED FROM ROOT DALL AS HIGH AS POSSIBLE. AT LEAST HAMPARY DOWN HE BALL, OF THE TIER. ALL INTIAN ROYSE TO BE CONFIDENT REPORTED. FROM THESE.

LANDSCAPE CALCULATIONS (cont.)

LOCATION	BUFFER WIDTH	LENGTH	REQUIRED	PROVIDED
E. BLOUNT ST. (NORTH)	20'	2510" / 100" =	48 TREES	(44 SHADE TREES .
			12 EVERGREENS 205 SHRUES	13 EVERGREENS 2004 SHRIES
E. BLOUNT ST.	20'	2360' / 100' •	46 TREES	505 TREES (43 SHADE TREES + IS ORNAMENTAL TREES
			TI EVERGREENS 204 SHRUDS	TI EVERGREENS 204+ SHRUDS
TOTAL NUMBER O	421 TREES 542 TREES			
TOTAL NIMBER O	AIR TREES			

LEDGESTONE SOUTH SUBDIVISION

KUNA, ID