

We Make a Difference

Planning for Uncertainty

COMPASS March 19, 2018

Lorna Parkins AICP

Michael Baker

30 Years of Planning

Explain the past \rightarrow Predict the future

A funny thing happened around 2004...

→ 2013 Real US GDP

→ 2013 US Vehicle Miles Traveled

Source: *Millennials in Motion,* US PIRG Education Fund & Frontier Group, 2014, p. 19.

Where do we go from here?

Disruptors cause uncertainty

Exploratory Planning for uncertain times

What is the range of outcomes?

What are the risks?

What are the opportunities?

Normative vs Exploratory Planning

Normative scenarios envision what SHOULD happen?

EXPLORATORY scenarios ask what COULD happen?

What are the big disruptors?

Generational changes

There is a new demographic profile

Different values govern life choices

Millennials and Boomers alike want:

Economic Disruptors

Economic Disruptors

We Make a Difference

Supply Chain Dynamics

VMT: Vehicle Miles Traveled

Tell me about economic...

OPPORTUNITIES

- Technology
- Workforce
- Training
- Transportation

THREATS

- Technology
- Workforce
- Training
- Transportation

Technology Disruptors

Connected and Automated Vehicles (CAV)

55 international cities are hosting $\underline{\mathsf{CAV}}$ tests or have committed to doing so in the near future

29 international cities are undertaking long-range surveys of the regulatory, planning, and governance issues raised by CAVs, but have not yet started piloting

Autonomous Shuttles/Transit

 $\textbf{Dozens} \ \ \text{of international cities are conducting autonomous shuttle pilot/deployment programs}$

Mobility as a Service

Information Systems

Hype Cycle for Emerging Technologies

Levels of Vehicle Automation

Source: Siemens

 We Make a Difference
 27
 3/20/2018

Connected vehicles

Vehicle-to-Network

e.g. traffic 5 miles ahead

Vehicle-to-Infrastructure

e.g. traffic signal ahead turning red

Vehicle-to-Vehicle

e.g. emergency vehicle approaching

Highly automated vehicles

HOW WAYMO'S SELF-DRIVING CAR WORKS

Vehicles will be connected and automated

Connected Automation for Greatest Benefits

Technology and travel behavior

How Transportation Technology Could Impact Travel Demand

Technology could contribute to roadway travel demand by increasing mobility options for those who cannot currently drive, generating new zero-occupancy vehicle trips, facilitating longer distance commutes, generating additional convenience-based trips, and by potentially reducing time and miles spent searching for parking.

As we think about disruptors...

We begin to see potential causes and effects ...

...and the benefits of exploring the range of outcomes

Preparing for Uncertainty: Exploratory Planning

OVERVIEW

Start with drivers

Assessing drivers

Example of Public Input Received on Technology Drivers

Chain of logic from inputs to outputs

Iterative process to define scenarios

- Iterative Process
- Adapt to achieve:
 - Internal consistency
 - Range of outcomes

Potential exploratory planning outputs

Exploratory Planning Toolkit

DRIVERS

Economic

Environment/ Energy

Technology/ Mobility

COMMUNITY TYPES

V6 – Multimodal Urban

V5 - High Density Suburban

> V4 -Multimodal Suburban

V3 – Small Town/Suburban

V1 - Rural

GENERATIONS

Baby Boomer

Generation X

Millennial

Generation Z

INDUSTRY MIX

Example Exploratory Scenarios

Linking land use and transportation

Two Key Criteria to Define Placetypes

The Placetypes reflect areas with noticeable differences in travel behavior as it relates to land use patterns.

V1 – Rural V2 – Low-Density Suburban V3 – Small Town/ Suburban

(Density)

V4 – Multimodal Suburban V5 – High Density Suburban V6 – Multimodal Urban

Linking land use and transportation

Differentiate:

- Mode Split
- Demographics
- Trip Rates
- TechnologyImplementation

Baseline Technology Assumptions

V2V connectivity. I-95 Corridor Coalition

[1] [2] Information above was inspired by public input

Technology and travel behavior

Assumptions become more robust when applied differently to different placetypes

Technology and roadway capacity

CAV Capacity Benefits

Vehicle Platooning. Source: USDOT

V2V connectivity. I-95 Corridor Coalition

Although VMT is expected to increase, vehicle technology & infrastructure improvements will help increase travel efficiency and throughput (effectively increasing roadway capacity)

What about transit?

Anticipate a Spectrum of Services...

Chain of logic from inputs to outputs

Exploratory Planning Outcomes

Comparing scenarios – high level insights

PTP: Person Through-put

Envisioning the Future...

Inter-City Corridors

Corridor of Statewide Significance

Urban Networks

Envisioning the Future...

- Separated bike lanes and walkways
- High quality rapid transit systems with dedicated lanes or tracks
- Autonomous transit shuttles to connect to high volume transit corridors
- Inductive charging strips in pavement offers charging boost for electric vehicles
- Mobility-on-demand services, like bikeshare
- "Smart intersections", equipped with sensors that seamlessly relay traffic and safety information to motorists
- Smaller freight vehicles (trucks, vans) and drone delivery

Small Towns

Envisioning the Future...

- 1 Smaller vehicle, flexible-route transit service
- Mobility-on-demand services, like bikeshare and carshare
- Pedestrian/bike-friendly intersections that alert vehicles/motorists of pedestrian and cycling activity
- Designated pick-up and drop-off areas for autonomous vehicles
- "Smart intersections", equipped with sensors that seamlessly relay traffic and safety information to motorists

Key Findings: How can we prepare for the future?

Anticipate Increased Demand

- Automated and on-demand vehicles will unleash growth in travel demand
- Foreseeable changes in travel behavior with connected and automated vehicles (CAV)
 will increase travel demand
- Tech. innovations in the economy as well as transportation will spur growth in freight traffic

Technology Will Enhance System Performance

- Safety improvements will reduce congestion from incidents
- Information will improve efficient use of the whole system
- Vehicles will become safer, smaller, and able to travel closer together

Timing is Key – Balancing these two sides of the technology future is critical

Design is also Key – Walkable and multimodal places have the most balanced outcomes

Focus on risks and opportunities

Develop policies to be prepared

Monitor trends, impacts and investments

Questions and Discussion