Pre-Concept Report

Ustick Road, Montana to Indiana, Pre-Concept

 COMPASS Project No. 2015-16

Prepared For:

COMPASS

City of Caldwell

Prepared By:

Table of Contents

InTRODUCTION 1
Existing Conditions 1
Existing Roadway and Intersections 1
GIS Data and Surface Utilities 1
Traffic and Safety Analysis 2
Peak Hour Operations 2
Traffic Signal Warrant Analysis 3
Intersection Operations 3
Crash Data 4
Environmental ScAn 5
Alternate Solutions 6
Storm Water Disposal 6
Cost Estimates 7
Public involvement Plan 7
Public Involvement Tasks 7
List of Stakeholders 8
Agencies 8
Schools/Community 8
Adjacent Property Owners 8
Utilities 9
Project Purpose, Needs, Goals and Schedule 9
Purpose and Needs Statement 9
Strategic Goals and Performance Measures 10
Schedule and Milestones 11
Appendix A (Plan and Typical Section Exhibits) A
Appendix B (Traffic and Safety Analysis Report) B
Appendix C (Environmental Scan) C
ApPENdIX D (ITD Forms) D

InTRODUCTION

The Community Planning Association of Southwest Idaho (COMPASS) retained Six Mile Engineering to conduct this pre-concept study of Ustick Road, from Montana Avenue to Indiana Avenue. The proposed improvements consist of widening Ustick Road from a two-lane roadway without curb, gutter and sidewalk to a four-lane roadway with raised median lanes or a five-lane roadway with curb, gutter sidewalk and bike lanes. Two improvement options are considered at the Montana Avenue intersection a conventional signalized intersection and a roundabout. At the Indiana Avenue intersection, improvements considered consist of widening the single-lane roundabout to a modified dual-lane roundabout or a dual-lane roundabout.

The City of Caldwell is the sponsor for this potential federal-aid project to reconstruct Ustick Road. The purpose of this study is to provide information to the City and COMPASS to assist with project programming.

Existing Conditions

Existing Roadway and Intersections

Ustick Road is a two-lane rural section functionally classified as a principal arterial within the project limits. The posted speed limit is 35 miles per hour (mph). Approximately 300 feet west of the Montana Avenue intersection, Ustick Road widens to a five-lane roadway with curb, gutter and sidewalk.

Montana Avenue is a two-lane rural section functionally classified as a collector within the project limits with a posted speed limit of 35 mph .

The Indiana Avenue and Ustick Road intersection is a single-lane roundabout that was constructed by City forces in 2013.

The Montana Avenue and Ustick Road intersection is two-way stop-controlled on the Montana Avenue approaches.

GIS Data and Surface Utilities

The City of Caldwell provided their GIS and aerial mapping for the project area. DigLine was contacted for a list of utility companies within the project limits. Individual utility companies were not contacted as part of this study. See below for a list of affected utilities and potential impacts:

- City of Caldwell - Sanitary Sewer/Water/Storm Drain (shown on GIS)
- Existing SD structures relocated/replaced
- New SD structures and pipe will be required
- Water valve/Sanitary manhole adjustments
- May encounter underground conflicts with existing water/sewer and proposed storm drain laterals
- Intermountain Gas
- Line appears to run on north side of Ustick with occasional crossings
- Valve adjustments
- May encounter underground conflicts with proposed storm drain laterals
- Idaho Power
- Primarily overhead (south side of Ustick/west side of Montana)
- Relocate poles to utility buffer
- Cable One - West Valley
- Share poles with power on south side of Ustick. Potential underground crossings.
- Overhead east side of south leg of Montana
- Relocate poles to utility buffer
- May encounter underground conflicts with proposed storm drain trunk line
- CenturyLink
- Share poles with power on south side of Ustick. Potential underground crossings.
- Overhead east side of south leg of Montana
- Relocate poles to utility buffer
- May encounter underground conflicts with proposed storm drain trunk line
- Zayo Fiber Group
- Potential overhead and underground locations.
- May encounter underground conflicts with proposed storm drain trunk line
- Pioneer Irrigation District
- Dixie Drain
- Open concrete channel on north side of Ustick (1/4 mile east of Indiana to Dixie Drain).
- Apparent abandoned cast-iron pipe along right-of-way on property at northwest corner of Montana Avenue.
- Underground piping possible within project limits. May require relocation.

Detailed coordination with all affected utilities during the next phases of design will be required to confirm impacts.

Traffic and Safety Analysis

A traffic and safety analysis of the existing and proposed conditions was developed to evaluate the traffic operations and safety to support the pre-concept designs presented in this report. The full report is in the Appendix B with excerpts listed below.

Peak Hour Operations

The existing AM and PM peak hour traffic operations were analyzed for both intersections. The Montana Avenue approaches at Ustick Road are currently operating at LOS E for the northbound movements and LOS F for the southbound movements during the AM peak hour. During the PM peak hour, the movements are operating at LOS C and D.

The Ustick Road and Montana Avenue roundabout is currently operating at LOS A during the PM peak hour.

Traffic Signal Warrant Analysis

A signal warrant analysis was performed for the Ustick Road and Montana Avenue intersection. The two applicable warrants, Warrant 1 - Eight-Hour Vehicular Volume and Warrant 2 - Four-Hour Vehicular Volume were evaluated. Warrant 7 - Crash Experience was also evaluated because there were six report crashes in the past 12 -month period. The remaining signal warrants did not apply.

The Ustick Road and Montana Avenue intersection does not meet warrants for a traffic signal with existing traffic from August 2015. With existing traffic, the warrant thresholds for Warrant 1 are satisfied for four of eight hours, and two of four hours for Warrant 2.

With 2020 traffic conditions and the proposed widening completed, the warrant thresholds for Warrant 1 are satisfied for two of eight hours and no hours for Warrant 2 . The intersection is expected to meet Warrant 2 for a traffic signal with 2040 traffic conditions.

In 2014, there were six reported angle crashes at the Ustick Road and Montana Avenue intersection. These angle crashes are susceptible to correction by a traffic signal and would satisfy Warrant 7 Criteria B requirements of five or more reported crashes within a 12 -month period. However, Warrant 7 also requires meeting Criteria A - adequate trial of alternatives has failed to reduce the crash frequency, and Criteria C - eight-hour vehicular volume at 80 percent level or pedestrian volume is not less than 80 percent level of the required volume. Criteria A of Warrant 7 is not satisfied because there has not been adequate trial of alternatives to reduce the crash frequency. Criteria C of Warrant 7 is also not met with 2015 existing traffic - only six of eight hours vehicular volumes are satisfied. With 2020 traffic, seven of eight hours of vehicular volumes for Criteria C are satisfied. Warrant 7 is not met because all three criteria are not satisfied. With 2040 traffic, Criteria C of Warrant 7 will be satisfied.

Intersection Operations

The Ustick Road and Montana Avenue intersection was evaluated with the following intersection improvements alternatives with 2020 (assumed construction year) and 2040 (assumed design year) traffic conditions:

- No-build (existing two-way stop-control)
- Multi-lane roundabout
- Conventional signalized intersection

The following are results from the 2020 and 2040 AM and PM peak hour traffic analysis of the Ustick Road and Montana Avenue intersection:

- With the no-build alternative, the northbound and southbound approaches at the intersection are expected to operate at LOS F during peak hours with the 2020 and 2040 forecasted peak hour traffic.
- As a multi-lane roundabout, consisting of two entry lanes on the Ustick Road approaches and one entry lane on the Montana Avenue approaches, the intersection is expected to operate at LOS A
with a v/c ratio of 0.24 or less for all approaches with 2020 peak hour traffic. With 2040 peak hour traffic, the intersection is expected to operate at LOS A with a v/c ratio of 0.57 or less for all approaches.
- With a conventional traffic signal with 2020 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.27 or less for all lane groups. With 2040 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.50 or less for all lane groups. The following lane configurations were evaluated for both forecast scenarios:
- One exclusive left-turn lane, two through lanes and one exclusive right-turn lane on the Ustick Road approaches.
- One exclusive left-turn lane, one through lane and one exclusive right-turn lane on the Montana Avenue approaches.

The Ustick Road and Indiana Avenue intersection was evaluated with the following intersection improvement alternatives with 2020 and 2040 traffic conditions:

- No-build (existing single-lane roundabout)
- Modified dual-lane roundabout
- Dual-lane roundabout

The following are results from the 2020 and 2040 AM and PM peak hour traffic analysis of the Ustick Road and Indiana Avenue intersection:

- With the no-build alternative, the intersection is expected to operate at LOS F during peak hour with 2020 and 2040 forecasted peak hour traffic.
- As a modified dual-lane roundabout, consisting of a single circulating lane with slip lanes on all approaches, the intersection is expected to operate at LOS A with a v/c ratio of 0.46 or less for all approaches 2020 peak hour traffic. With 2040 peak hour traffic, the intersection is expected to operate at LOS F with a v/c ratio exceeding 0.85 on the southbound, eastbound and westbound approaches.
- As a dual-lane roundabout with 2020 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.27 or less for all lane groups. With 2040 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.84 or less for all lane groups.

Crash Data

Crash history over the previous five years (2010 to 2014) was evaluated for the roadway segment and for the intersections to determine the existing crash rates. The existing crash rate for the Ustick Road segment between Montana Avenue and Indiana Avenue is 4.59 ACC/MV, nearly four times the base rate of 1.19 ACC/MV, which is the expected crash rate for similar roadways in Idaho with similar traffic volumes.

The existing crash rate for the Montana Avenue intersection is 0.99 ACC/MV which exceeds the base crash rate of 0.67 ACC/MV. The existing crash rate for the Indiana Avenue intersection is 0.51 ACC/MV which is below the base crash rate of 0.70 ACC/MV.

Environmental Scan

An environmental scan was conducted to identify environmental resources within the project area that may be impacted by the proposed project. Possible issues and required permits were identified. The full report prepared by Bionomics is in the Appendix C. Highlights of the scan include:

- Four known previously recorded cultural resource sites within a $1 / 2$ mile of the project area. One of those sites, the Dixie Drain, was identified crossing the project area which is a NRHP eligible site.
- The Dixie Drain and an unnamed irrigation ditch were identified in the project area. Both irrigation ditches are considered a water of the U.S. and likely under the jurisdiction of the USACE due to their eventual hydrological connection to the Boise River, a traditional navigable waterway. Any fringe wetlands associated with these drainages would also be considered under the jurisdiction of the USACE.
- The USFWS IPaC list identifies slickspot peppergrass as potentially occurring in the project area.
- The project is within an Idaho DEQ identified air quality Area of Concern for CO and PM10. The project is exempt from an air quality analysis in accordance with 40 CFR 93.126, and, therefore, it can be concluded that the project would have no significant adverse impact on air quality.
- Prime farmlands were identified along the project area. If determined that prime farmlands are to be impacted, consultation with the NRCS and completion of the NRCS Prime Farmland Conversion Form AD-1006 would need to be completed.

The following technical studies may require completion and approval prior to any construction activity, if federal funds are utilized.

- A categorical exclusion would be required in compliance with NEPA.
- Archaeological and Historic Survey Report, in accordance with Section 106 of the National Historic Preservation Act.
- Waters of the U.S. and Wetland Delineation Report in accordance with Section 404 of the Clean Water Act.
- Biological Evaluation in accordance with Section 7 of the Endangered Species Act, as well as Idaho Species of Concern Report.
- Traffic Noise Analysis in accordance with FHWA guidelines and ITD Noise Policy.
- Hazardous Materials Assessment (project specific).

The following approvals may be necessary, given the resources on or in proximity to the project. This list is not meant to be all inclusive, as additional approval and permits may be necessary based on project specifics.

- Joint Permit Application (to place fill in or dredge waters of the US, including wetlands; to obtain a Section 401 Water Quality Certification; and/or to obtain a state stream alteration permit)
- NPDES Stormwater Permit
- Prime Farmland Conversion

Alternate Solutions

Two intersection alternatives were developed for the intersection of Ustick and Montana:

- Alternative 1 - Conventional intersection
- Alternative 2 - Roundabout

The lane configuration for Alternative 1 includes two through lanes, one left-turn lane, and one right-turn lane eastbound and westbound on Ustick Road. The northbound and southbound Montana Avenue approaches each contain one through lane, one left-turn lane and one right-turn lane.

Alternative 2 is a multi-lane roundabout with two approach lanes eastbound and westbound on Ustick Road and one approach lane northbound and southbound on Montana Avenue.

Modifications to the existing roundabout at the Indiana Avenue intersection were also developed to accommodate the five-lane section west of Indiana. Right-turn slip lanes were added on all approaches. If future traffic volumes warrant, this roundabout can be converted to a dual-lane roundabout by removing the curb separating the right-turn lane from the single circulating lane.

Storm Water Disposal

Currently, storm drain facilities are limited to the western portion of the project in the vicinity of Montana Avenue. In areas that have curb and gutter, roadway runoff is collected in catch basins and piped to underground structures or surface swales. The remaining rural section of roadway does not contain any storm water collection or disposal facilities.

The proposed roadway improvements will increase impervious area significantly; therefore, careful consideration must be used in developing storm water disposal options. The proposed urban section will collect the roadway runoff in catch basins throughout the corridor and convey it to the preferred disposal site or sites developed during design. Preliminary thoughts on disposal options include the following:

- Pre-treatment and outfall to the Dixie Drain and/or unnamed drain west of Montana
- Underground treatment and storage
- Seepage beds
- Pipe storage detention system with outfall to Dixie Drain and/or unnamed drain
- Pond treatment and storage with overflow to Dixie Drain and/or unnamed drain

For the purposes of the pre-concept design, it was assumed that Ustick Road could be divided into two drainage basins that would each encompass approximately half of the project corridor. The combined drainage basin area is approximately 10 acres for the conventional intersection and 11 acres for the roundabout. In each basin, roadway runoff would be collected in catch basins in the gutter and conveyed through underground pipes to treatment areas at the east end and west end of the project respectively.

With current stormwater treatment and storage standards, an approximate volume of stormwater was calculated for both alternatives assuming a 100-yr storm event:

- Conventional intersection - 40,000 cubic feet
- Roundabout $-45,000$ cubic feet

Without subsurface information, the depth to groundwater is unknown, but for the purposes of this report it was assumed that groundwater is present at a depth of 6 feet. This allows for a pond depth of 2 feet, which equates to an overall pond area of approximately 20,000 to 22,500 square feet. Subsurface investigations will be completed during design at which time the pond/storage areas and volumes can be designed.

The pre-concept construction cost estimates includes costs to construct the pond storage and treatment. Right-of-way acquisition may be required for the chosen stormwater treatment and storage system and are not included in the pre-concept cost estimates.

Cost Estimates

The estimated construction cost for the proposed concept design improvements is summarized in Table 1. ITD Form 1150 - Project Cost Summary Sheet is included in the Appendix.

Table 1. Concept design estimated construction costs

	Conventional Signalized Intersection	Multi-Lane Roundabout
Right-of-Way	$\$ 660,000$	$\$ 930,000$
Utilities	$\$ 0$	$\$ 0$
Construction	$\$ 3,600,000$	$\$ 3,400,000$
Construction Engineering and Contingencies (15\%)	$\$ 540,000$	$\$ 510,000$
Total	$\$ 4,800,000$	$\$ 4,840,000$

The City currently has development agreements with two properties adjacent to the project which help reduce the amount of right-of-way required for this project.

Public involvement Plan

The City of Caldwell is the sponsor of the project. Public involvement for this project will follow the ITD Guide to Public Involvement. No public involvement was conducted as part of the pre-concept development.

Public Involvement Tasks

Following ITD's Public Outreach Planner (POP), this project is classified as an Environmental and Design Level 3. Below is a list of the tools and resources suggested in the POP to effectively and successfully
reach out to and involve the public in the design process. Detailed descriptions of the tools and resources listed can be found in the ITD Public Outreach Planner.

- Agency/municipal coordination
- Stakeholder interviews
- School district/busing coordination
- Fliers/Newsletters
- Public meeting
- Environmental justice outreach
- Legal notices/notice of availability
- Community Advisory Committee
- Facilitated decision-making
- Special interest group outreach
- Media relations
- Social media
- District projects website posting
- Online surveying
- EMS contacts

List of Stakeholders

Agencies

- City of Caldwell
- COMPASS
- Idaho Transportation Department
- Canyon Highway District \#4

Schools/Community

- Heritage Community Charter School
- Lewis and Clark Elementary
- Washington Elementary
- Jefferson Middle School
- Syringa Middle School
- Caldwell High School
- Vallivue Middle School
- Vallivue High School
- Treasure Valley YMCA - Caldwell

Adjacent Property Owners

- Gregory D and Carol M Larsen
- Michael C and Kelly A Hill
- Eldorado Estates Subdivision Owners
- Sundowner Inc
- CIC Development LLC
- Dawna L Jenkins
- Julia Chapman Living Trust, Julia Faye Chapman Trustee
- Roberto A and Linda L Jasso TR
- Yolanda Hernandez
- Jose and Josefina Robles
- Modesto L Vega
- Isaias and Maria G Velez H/W
- Philip G and Mary E Eldredge Trust
- Hoshaw Family Land Trust, Thomas Hoshaw Trustee
- James and Pammala Hooven
- Patrick D and Cheryl H Baker
- Edward Aitchison
- James E and Deborah Herring H/W
- Hector Barraza and Patricia Rivera H/W
- Javier Serrano
- Kelly Dean Hoffman and Jessica Lane Dockard Hoffman
- Gorilla Capital ID 201 LLC
- Jerry W and Patricia K Dix
- MC Ventures LLC
- Rhino and Moose LLC
- Smiles 4 Kids Caldwell PLLC
- Darryl and Leesa Kilby
- Juan P and Carmen Pesina
- Feller Limited Partnership Feller Family Trust
- Cooper Family Trust, Gary L Cooper Trustee

Utilities

- Intermountain Gas
- Idaho Power
- Cable One - West Valley
- Century Link
- Zayo Fiber Group
- Pioneer Irrigation District

Project Purpose, Needs, Goals and Schedule

Purpose and Needs Statement

The Montana Avenue approaches at Ustick Road are currently operating at LOS E for the northbound movements and LOS F for the southbound movements during the AM peak hour. During the PM peak hour, the movements are operating at LOS C/D.

The existing crash rate for the Ustick Road segment between Montana Avenue and Indiana Avenue is 4.59 ACC/MV, nearly four times the base rate of 1.19 ACC/MV, for similar roadway segments in Idaho. The existing crash rate for the Montana Avenue intersection is 0.99 ACC/MV which exceeds the base crash rate of 0.67 ACC/MV.

Pedestrian accommodations with sidewalk are important for this corridor. A YMCA is located on Indiana north of Ustick, and there are several schools located within a one-mile radius of the project area.

The project purpose and needs are:

- The purpose of this project is to improve operations and safety for all users; vehicles, pedestrians and bicycles.
- The project is needed to increase intersection capacity at the Ustick and Montana intersection and maintain a minimum LOS D with future traffic demand, and to improve sidewalk connectivity within the project area.

Strategic Goals and Performance Measures

In collaboration with the City of Caldwell and COMPASS, the following performance measures in accordance with the Communities in Motion 2040 plan, are recommended for the project.

- Transportation/Freight Movement and Economic Vitality (PM 14)
- Transportation/Congestion Reduction and System Reliability (PM 6)
- Transportation Safety (PM 15-24)
- Health (PM 26-29, PM 50-53)

The measurable variables that quantify the above performance measures include:

- Travel time index
- Auto, bicycle and pedestrian crashes
- Bicycle/Pedestrian level of service
- Household connectivity to parks, schools, and grocers

The following list of strategic goals has been developed for this project:

- Reduction in crash rate
- Installation of traffic signal can reduce crashes at an intersection by up to 30 percent
- Installation of roundabout can reduce crashes at an intersection by up to 35 percent, with injury crashes reduced up to 76 (see Traffic and Safety Analysis Report in Appendix B for further explanation of crash reduction rates.)
- Improved bicycle/pedestrian level of service
- Bicycle baseline/no-build LOS is D, with a link score of 3.72. With the proposed addition of bike lanes and center turn lane, the LOS will improve to A with a link score of 1.53.
- Pedestrian baseline/no-build LOS is D, with a link score of 4.08. With the proposed addition of continuous sidewalks and a mid-block signalized pedestrian crossing, the LOS will improve to B with a link score of 2.06 .

A reduction in travel time or delay for the corridor was not selected as a strategic goal because the project improvements will add intersection control to currently uncontrolled approaches on Ustick Road, which will increase the corridor travel time and delay. The intersection improvements are expected to increase safety and reduce delay for Montana Avenue traffic. The increase in delay for the Ustick Road corridor and the Ustick Road and Montana Avenue intersection will result in an acceptable LOS for both intersection improvement options.

An improvement in the connectivity to parks, schools and grocers was also not selected as a strategic goal because the connectivity analysis results were deemed inaccurate due to the level of development within the corridor. The number of houses affected is too large for comparison to an undeveloped area but also significantly too small for a developed area.

Schedule and Milestones

As a federal project the project development schedule is estimated as follows:

- Consultant selection, scoping, negotiations and contract 6 months
- Design 33 months
- Concept Report approval 6 months
- Environmental Evaluation approval 12 months
- R/W acquisition 12 months
- Final design (PS\&E) 3 months
- Construction letting by ITD. 3 month
- Construction 10 months
- Total 46 months

APPENDIX A Plan and Typical Section Exhibits

USTICK ROAD, MONTANA TO INDIANA

PRE-CONCEPT DESIGN ALTERNATIVE 1 - CONVENTIONAL INTERSECTION

USTICK ROAD, MONTANA TO INDIANA

MONTANA AVENUE TYPICAL SECTION

APPENDIX B
 Traffic and Safety Analysis Report

Traffic and Safety Analysis Report

Ustick Road, Montana to Indiana, Pre-Concept

COMPASS Project No. 2015-16

Prepared For:

COMPASS

City of Caldwell

TABLE OF CONTENTS

INTRODUCTION 1
EXISTING CONDITIONS 1
Traffic Volumes 1
Peak Hour Intersection Operations 2
Crash Data 2
Traffic Signal Warrant Analysis 3
2020 (CONSTRUCTION YEAR) AND 2040 (DESIGN YEAR) ANALYSIS 4
Traffic Forecasts 4
Peak Hour Intersection Operations 4
Ustick Road and Montana Avenue Intersection 4
Ustick Road and Indiana Avenue Intersection 7
CRASH REDUCTION 8
ITD Safety Evaluation Manual 8
Federal Highway Administration 9
APPENDIX A

INTRODUCTION

This project conducts pre-concept designs and studies for the proposed widening of Ustick Road to five lanes from Montana Avenue to Indiana Avenue with improvements at the two intersections to accommodate the forecasted planning year traffic volumes. The pre-concept work is intended to help define the scope of project development so the City of Caldwell and COMPASS can more accurately program the project.

The purpose of this traffic and safety analysis is to evaluate the traffic operations and safety to support the pre-concept design. Based on the ITD Roadway Design Manual, the maximum acceptable Level of Service (LOS) is D for federal aid projects on non-NHS state and local highways. The maximum intersection lane group v/c ratio is 1.0 for a traffic signal and 0.85 for a roundabout for this project, following Ada County Highway District requirements.

The Ustick Road and Montana Avenue intersection was evaluated with the following intersection improvements alternatives with 2020 (assumed construction year) and 2040 (assumed design year) traffic conditions:

- No-build (existing two-way stop-control)
- Multi-lane roundabout
- Conventional signalized intersection

The Ustick Road and Indiana Avenue intersection was evaluated with the following intersection improvement alternatives with 2020 and 2040 traffic conditions:

- No-build (existing single-lane roundabout)
- Modified dual-lane roundabout
- Dual-lane roundabout

Crash history over the previous five years (2010 to 2014) was evaluated for the roadway segment and intersections to determine the existing crash rates.

EXISTING CONDITIONS

Traffic Volumes

The 2015 existing average daily traffic (ADT) and peak hour intersection turning movement counts were collected to support traffic and safety analysis for the project and are included in the appendix. A 24-hour count was collected at the Ustick Road and Montana Avenue intersection on all four approaches on a weekday in August 2015. Both AM and PM peak hour intersection turning movement counts were collected at the Ustick Road and Montana Avenue intersection on a weekday for a 2-hour period at 15minute intervals between 7:00 and 9:00 during the AM peak travel period hour and between 4:00 and 6:00 during the PM peak travel period. PM peak hour intersection turning movement counts were also collected at the Ustick Road and Indiana Avenue intersection.

Peak Hour Intersection Operations

The existing AM and PM peak hour traffic operations were analyzed using Synchro 9.1 (version 904.125) and SIDRA 6.1, which utilizes the 2010 Highway Capacity Manual (HCM 2010) methodologies. The intersection was evaluated with the existing intersection control, lane configuration and peak hour volumes. All parameters used in the analysis were based on existing data when available or default values when not available. Data from roundabout parameters performance studies in Oregon and California were used to estimate the gap acceptance parameters. Table 1 summarizes the existing turning movement volumes, lane configuration, intersection control and measures of effectiveness (MOEs). Synchro and SIDRA analysis reports are included in the appendix.

The followings are results from the 2015 existing traffic analysis:

- The Montana Avenue stop-controlled approaches at Ustick Road are currently operating at LOS E for the northbound movements and LOS F for the southbound movements during the AM peak hour. During the PM peak hour, the movements are operating at LOS C/D.
- The Ustick Road and Indiana Avenue single-lane roundabout is currently operating at LOS A during the PM peak hour.

Table 1. 2015 existing traffic analysis results

Intersection	AM(PM) Peak Hour Volumes, Control and Channelization	MOE	AM Peak Hour	PM Peak Hour
Ustick Road and Montana Avenue		$\begin{gathered} \hline \text { LOS } \\ (\mathrm{NB} / \mathrm{SB}) \end{gathered}$	E/F	C/D
		$\begin{gathered} \text { Delay (sec) } \\ (\mathrm{NB} / \mathrm{SB}) \\ \hline \end{gathered}$	45/51	25/32
		Intersection v / c	-	-
		Max Lane Group v/c	$\begin{aligned} & 0.74 \\ & \text { (NB) } \end{aligned}$	$\begin{aligned} & 0.51 \\ & (\mathrm{SB}) \end{aligned}$
Ustick Road and Indiana Avenue		LOS	Not Evaluated	A
		Delay (sec)		9
		Intersection v / c		-
		Max Lane Group v/c		$\begin{aligned} & 0.48 \\ & \text { (WB) } \end{aligned}$

Crash Data

The most recent five years of crash data, from 2010 to 2014, was obtained from ITD for the Ustick Road segment between Montana Avenue and Indiana Avenue and for the Montana Avenue and Indiana Avenue intersections on Ustick Road. Table 2 on page 3 summarizes the crashes, base crash rates and
existing crash rates for the roadway segment and intersections. The ITD-2658 Safety Evaluation forms were completed to determine the existing crash rates and are included in the appendix.

The existing crash rate for the Ustick Road segment between Montana Avenue and Indiana Avenue is nearly four times the base rate, which is the expected crash rate for similar roadways in Idaho with similar traffic volumes. The existing crash rate for the Montana Avenue intersection exceeds the base crash rate, and the existing crash rate for the Indiana Avenue intersection is below the base crash rate.

Table 2. Crash data summary (2010 to 2014)

Roadway Segment or Intersection	Total Crashes	Property Damage Crashes	Injury Crashes	Fatal Crashes	Ped/Bike Crashes	Base Rate (ACC/MV (MVM))*	Existing Crash Rate (ACC/MV (MVM))
Ustick Road, Montana to Indiana	51	32	19	0	0	1.19 (Type 60)	4.59
Ustick / Montana	25	14	11	0	0	0.67 $($ Type 63)	0.99
Ustick / Indiana	15	13	2	0	0	0.70 (Type 60)	0.51

*The base rate is the typical number of accidents to occur on a roadway or intersection in Idaho with similar travel lanes and volumes

Traffic Signal Warrant Analysis

A signal warrant analysis was performed for the Ustick Road and Montana Avenue intersection using the 24-hour tube counts, following the procedures outlined in the 2009 Manual on Uniform Traffic Control Devices (MUTCD). The two applicable warrants, Warrant 1 - Eight-Hour Vehicular Volume and Warrant 2 - Four-Hour Vehicular Volume were evaluated. Warrant 7 - Crash Experience was also evaluated because there were six report crashes in the most recent 12-month period. Warrant 4 - Pedestrian Volume was not evaluated because the existing count of pedestrians crossing Ustick Road, obtained when school was in session, is lower than the warrant minimum threshold. The remaining signal warrants did not apply.

The Ustick Road and Montana Avenue intersection does not meet traffic signal warrants with 2015 existing traffic. With existing traffic, the warrant thresholds for Warrant 1 are satisfied for four of eight hours, and Warrant 2 for two of four hours. With 2020 traffic conditions and the proposed widening completed, the warrant thresholds for Warrant 1 are satisfied two of eight hours and none for Warrant 2. The intersection is expected to meet Warrant 2 with 2040 traffic conditions.

In 2014, there were six reported angle crashes at the Ustick Road and Montana Avenue intersection. These angle crashes are susceptible to correction by a traffic signal and would satisfy Warrant 7 Criteria B requirements of five or more reported crashes within a 12-month period. However, Warrant 7 also requires meeting Criteria A, adequate trial of alternatives has failed to reduce the crash frequency, and Criteria C, eight-hour vehicular volume at 80 percent level or pedestrian volume is not less than 80 percent level of the required volume. Criteria A of Warrant 7 is not satisfied because there has not been adequate trial of alternatives to reduce the crash frequency. Criteria C of Warrant 7 is also not met with

2015 existing traffic because only six of eight hours of vehicular volumes are satisfied. With 2020 traffic, seven of eight hours vehicular volumes for Criteria C are satisfied. With 2040 traffic, Criteria C of Warrant 7 is satisfied. In conclusion, Warrant 7 is not met because all three criteria are not satisfied.

2020 (CONSTRUCTION YEAR) AND 2040 (DESIGN YEAR) ANALYSIS

Traffic Forecasts

COMPASS provided 24-hour and PM peak hour travel demand model traffic forecasts for the study area intersections from their 2015, 2020 and 2040 adopted (base) models. The roadway networks in the adopted models follow COMPASS's Communities in Motion 2040 (CIM 2040), which does not include unfunded roadway projects in the Treasure Valley. One of the unfunded projects within the study area is widening Ustick Road to five lanes with curb, gutter and sidewalk from Montana Avenue to McDermott Road. However, this segment of Ustick Road is identified in the CIM 2040 as a priority corridor. To verify the 2040 traffic demand, a special model run with Ustick Road widened to five lanes was also evaluated. The 2040 traffic forecasts from the special model were higher than the 2040 base model, and therefore were used in this traffic analysis.

A comparison of the 2015 traffic forecasts from the model with the actual traffic counts within the study area showed a wide range of discrepancies ranging from 7 percent higher than existing to 78 percent lower. As a result, traffic forecasts from the models were adjusted following the post-processing procedures outlined in National Cooperative Research Program Report 255 (NCHRP 255).

The 2020 and 2040 PM peak hour intersection turning movement traffic forecasts were developed using the adjusted peak hour model forecasts. The 2020 and 2040 AM peak hour intersection turning movement traffic forecasts were developed using the adjusted 24 -hour model forecasts and estimated k factors that were based on existing k-factors. The forecasted AM and PM peak hour intersection turning movement traffic was estimated by balancing the forecasted peak hour approach volumes with existing turning movement percentages using the Furness Method. The Furness Method is a turning movement estimation technique presented in NCHRP 255 that alternatively balances the entering and departing traffic until the results converge, providing balanced forecasted turning movement traffic at the intersection. The 2020 and 2040 AM and PM peak hour intersection turning movements are presented in the following sections.

Peak Hour Intersection Operations

The intersections were evaluated with HCM 2010 methodologies using Synchro for stop-controlled and signalized intersections and SIDRA 6.1 for roundabouts. The traffic signal evaluation assumes fullyactuated traffic signals with 120-second cycle lengths, optimized timing splits and protected/permissive left-turn phasing. Exclusive right-turn lanes were added to all approaches as a safety enhancement.

Ustick Road and Montana Avenue Intersection

Three intersection improvement alternatives were evaluated with 2020 and 2040 traffic conditions:

- No-build (existing two-way stop-control)
- Multi-lane roundabout
- Conventional signalized intersection

Table 3 on page 6 summarizes the 2020 and 2040 forecasted intersection turning movement volumes, lane configurations, intersection control and MOEs. Traffic analysis reports are included in the appendix. The following are results from the 2020 and 2040 AM and PM peak hour traffic analysis of the Ustick Road and Montana Avenue intersection:

- With the no-build alternative, the intersection is expected to operate at LOS F during peak hours with the 2020 and 2040 forecasted peak hour traffic.
- As a multi-lane roundabout with 2020 peak hour traffic, the intersection is expected to operate at LOS A with a v/c ratio of 0.24 or less for all approaches. With two entry lanes on Ustick Road approaches and one entry lane on Montana Avenue approaches, and 2040 peak hour traffic, the intersection is expected to operate at LOS A with a v/c ratio of 0.57 or less for all approaches.
- With a conventional traffic signal with 2020 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.27 or less for all lane groups. With 2040 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.50 or less for all lane groups. The following lane configurations were evaluated for both forecast scenarios:
- One exclusive left-turn lane, two through lanes and one exclusive right-turn lane on the Ustick Road approaches.
- One exclusive left-turn lane, one through lane and one exclusive right-turn lane on the Montana Avenue approaches.

Table 3. Ustick Road and Montana Avenue - 2020 (construction year) and 2040 (design year) traffic analysis results

Intersection Alternative	Peak Period	2020 Peak Hour Volumes, Control and Channelization	2040 Peak Hour Volumes, Control and Channelization	MOE	2020	2040
No-Build	AM			$\begin{gathered} \hline \text { LOS } \\ (\mathrm{NB} / \mathrm{SB}) \end{gathered}$	F/F	F/F
				Delay (sec)	>50/>50	>50/>50
				$\begin{gathered} \hline \text { Intersection } \\ \text { v/c } \\ \hline \end{gathered}$	-	-
				Max Lane Group v/c	$\begin{aligned} & \hline 0.80 \\ & \text { (SB) } \end{aligned}$	$\begin{gathered} >1.00 \\ (\mathrm{NB} / \mathrm{SB}) \end{gathered}$
	PM			$\begin{aligned} & \text { LOS } \\ & (\mathrm{NB} / \mathrm{SB}) \end{aligned}$	D/F	F/F
				Delay (sec)	34/>50	>50/>50
				Intersection V / c	-	-
				Max Lane Group v/c	$\begin{aligned} & \hline 0.69 \\ & \text { (SB) } \\ & \hline \end{aligned}$	$\begin{gathered} >1.00 \\ \text { (NB/SB) } \\ \hline \end{gathered}$
Multi-Lane Roundabout	AM			LOS	A	A
				Delay (sec)	5	8
				Intersection v/c	-	-
				Max Lane Group v/c	$\begin{aligned} & 0.24 \\ & \text { (EB) } \end{aligned}$	$\begin{aligned} & \hline 0.40 \\ & \text { (NB) } \\ & \hline \end{aligned}$
	PM			LOS	A	A
				Delay (sec)	5	9
				$\begin{gathered} \hline \text { Intersection } \\ \text { v/c } \\ \hline \end{gathered}$	-	-
				Max Lane Group v/c	$\begin{aligned} & 0.0 .22 \\ & \text { (WB) } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.57 \\ & \text { (WB) } \\ & \hline \end{aligned}$
Signal	AM			LOS	C	C
				Delay (sec)	21	22
				$\begin{gathered} \text { Intersection } \\ \mathrm{v} / \mathrm{c} \end{gathered}$	0.33	0.45
				Max Lane Group v/c	$\begin{gathered} \hline 0.27 \\ \text { (EBT) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.43 \\ \text { (EBT) } \\ \hline \end{gathered}$
	PM			LOS	C	C
				Delay (sec)	22	24
				Intersection v/c	0.26	0.46
				Max Lane Group v/c	$\begin{gathered} 0.24 \\ \text { (WBT) } \end{gathered}$	$\begin{gathered} 0.50 \\ \text { (WBT) } \end{gathered}$

Ustick Road and Indiana Avenue Intersection

Three intersection improvement alternatives were evaluated with 2020 and 2040 traffic conditions:

- No-build (existing single-lane roundabout)
- Modified dual-lane roundabout
- Dual-lane roundabout

Table 4 on page 8 summarizes the 2020 and 2040 forecasted intersection turning movement volumes, lane configurations, intersection control and MOEs. Traffic analysis reports are included in the appendix. The following are results from the 2020 and 2040 AM and PM peak hour traffic analysis of the Ustick Road and Indiana Avenue intersection:

- With the no-build alternative, the intersection is expected to operate at LOS F during peak hour with the 2040 forecasted peak hour traffic.
- As a modified dual-lane roundabout with 2020 peak hour traffic, the intersection is expected to operate at LOS A with a v/c ratio of 0.46 or less for all approaches. With one entry lane and one right-turn lane on all approaches and 2040 peak hour traffic, the intersection is expected to operate at LOS F with a v/c ratio exceeding 0.85 on the southbound, eastbound and westbound approaches. As a modified dual-lane roundabout, the intersection is expected to operate below the maximum operational threshold until year 2030.
- As a dual-lane roundabout with 2020 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.27 or less for all lane groups. With 2040 peak hour traffic, the intersection is expected to operate at LOS C with a v/c ratio of 0.84 or less for all lane groups.

Table 4. Ustick Road and Indiana Avenue - 2020 (construction year) and 2040 (design year) traffic analysis results

Intersection Alternative	Peak Period	2020 Peak Hour Volumes, Control and Channelization	2040 Year Peak Hour Volumes, Control and Channelization	MOE	2020	2040
No-Build	PM			LOS	A	F
				Delay (sec)	10	>50
				Intersection v/c	-	-
				Max Lane Group v/c	$\begin{aligned} & \hline 0.54 \\ & \text { (SB) } \end{aligned}$	$\begin{aligned} & \hline>0.85 \\ & \text { (All) } \end{aligned}$
Modified Dual-Lane Roundabout	PM			LOS	A	F
				Delay (sec)	6	>50
				Intersection v/c	-	-
				Max Lane Group v/c	$\begin{aligned} & 0.46 \\ & \text { (EB) } \end{aligned}$	$\begin{gathered} >0.85 \\ (\mathrm{SB}, \mathrm{~EB}, \mathrm{WB}) \end{gathered}$
Dual-Lane Roundabout	PM			LOS	A	C
				Delay (sec)	6	25
				Intersection v / c	-	-
				Max Lane Group v/c	$\begin{aligned} & \hline 0.27 \\ & \text { (SB) } \end{aligned}$	$\begin{gathered} \hline 0.84 \\ \text { (WB) } \\ \hline \end{gathered}$

CRASH REDUCTION

ITD Safety Evaluation Manual

The crash reduction factors recommended by ITD are shown in Table 5 on page 9. The factors are based upon extensive accident studies and are available in Appendix A of the ITD Safety Evaluation Instruction Manual. ITD does not have a crash reduction factor specifically for widening a roadway from two lanes to five lanes or installing a roundabout. ITD has a crash reduction factor for intersection reconstruction which may be comparable to installing a roundabout. The ITD recommended crash reduction factors were applied to the existing crash rate to determine the expected crash rate after improvements are constructed. The raised median will prohibit turning movements and is projected to reduce crashes on the Ustick Road segment by 40 percent, resulting in an expected crash rate of 2.76 ACC/MVM, which still higher than the base rate. Reconstructing the Ustick Road and Montana Avenue intersection is projected to reduce crashes by approximately 40 percent and crash rate to 0.59 ACC/MV, which is below the base rate. For the traffic signal intersection alternative, the signal improvements are projected to reduce crashes at the Ustick Road and Montana Avenue intersection by approximately 30 percent and crash rate to 0.69 ACC/MV, which is slightly higher than the base rate.

Table 5. ITD recommended crash reduction factors

| Roadway Segment
 or
 Intersection | Improvement | ITD
 Existing
 Crash Rate | Recommended
 Crash
 Reduction
 Factors | Crash
 Reduction | Expected
 Crash Rate
 (ACC/MV) |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| | Widen roadway from 2 to 5
 lanes | (Not Available) | | | |

Federal Highway Administration

NCHRP Report 672, Roundabouts: An Informational Guide (Report 672), published by the Federal Highway Administration in 2010 provides information on the safety of both signalized intersections and roundabouts. The report found that the overall estimated crash reduction to convert any intersection treatment to a roundabout is 35 percent and the estimated reduction of injury crashes is 76 percent. The large reduction in injury crashes is due to the configuration of the roundabout, which reduces conflict points and eliminates severe crashes such as left-turn head on and right angle crashes. The reduction of crashes for roundabouts, particularly for injury crashes, exceeds the anticipated 30 percent crash reduction for the signalized intersections from the ITD Safety Evaluation Instruction Manual. Therefore, a roundabout is anticipated to improve safety more than a signalized intersection.

APPENDIX

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana N Leg VOL
Date Start: 26-Aug-15
Date End: 27-Aug-15
Montana \& Ustick - North Leg Caldwell, Idaho Site Code: N Leg

Start Time	$\begin{gathered} \text { 26-Aug-15 } \\ \text { Wed } \\ \hline \end{gathered}$	SB	NB							Total
12:00 AM		*	*							*
12:15		*	*							*
12:30		*	*							*
12:45		*	*							*
01:00		*	*							*
01:15		*	*							*
01:30		*	*							*
01:45		*	*							*
02:00		*	*							*
02:15		*	*							*
02:30		*	*							*
02:45		*	*							*
03:00		*	*							*
03:15		*	*							*
03:30		*	*							*
03:45		*	*							*
04:00		*	*							*
04:15		*	*							*
04:30		*	*							*
04:45		*	*							*
05:00		*	*							*
05:15		*	*							*
05:30		*	*							*
05:45		*	*							*
06:00		5	9							14
06:15		16	13							29
06:30		9	14							23
06:45		10	15							25
07:00		10	13							23
07:15		15	38							53
07:30		36	34							70
07:45		21	29							50
08:00		23	22							45
08:15		44	33							77
08:30		34	28							62
08:45		26	24							50
09:00		20	20							40
09:15		8	12							20
09:30		12	10							22
09:45		15	13							28
10:00		9	8							17
10:15		17	17							34
10:30		12	9							21
10:45		19	6							25
11:00		11	10							21
11:15		16	21							37
11:30		17	23							40
11:45		6	23							29
Total		411	444							855
Percent		48.1\%	51.9\%							
Peak	-	08:00	07:15	-	-	-	-	-	-	07:30
Vol.	-	127	123	-	-	-	-	-	-	242
P.H.F.		0.722	0.809							0.786

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana N Leg VOL
Date Start: 26-Aug-15
Date End: 27-Aug-15
Montana \& Ustick - North Leg Caldwell, Idaho Site Code: N Leg

Start Time	26-Aug-15 Wed	SB	NB							Total
12:00 PM		25	24							49
12:15		25	22							47
12:30		20	12							32
12:45		9	22							31
01:00		23	19							42
01:15		15	17							32
01:30		8	15							23
01:45		18	20							38
02:00		16	24							40
02:15		19	18							37
02:30		18	22							40
02:45		27	30							57
03:00		31	33							64
03:15		30	29							59
03:30		40	36							76
03:45		29	38							67
04:00		26	32							58
04:15		25	24							49
04:30		31	33							64
04:45		30	27							57
05:00		36	35							71
05:15		38	28							66
05:30		33	31							64
05:45		25	32							57
06:00		29	30							59
06:15		37	18							55
06:30		26	29							55
06:45		17	27							44
07:00		20	19							39
07:15		15	19							34
07:30		24	15							39
07:45		18	13							31
08:00		16	21							37
08:15		29	22							51
08:30		12	16							28
08:45		12	10							22
09:00		12	13							25
09:15		16	18							34
09:30		13	16							29
09:45		15	14							29
10:00		5	9							14
10:15		9	7							16
10:30		5	7							12
10:45		3	7							10
11:00		3	7							10
11:15		5	1							6
11:30		7	7							14
11:45		0	4							4
Total		945	972							1917
Percent		49.3\%	50.7\%							
Peak	-	16:45	15:00	-	-	-	-	-	-	15:00
Vol.	-	137	136	-	-	-	-	-	-	266
P.H.F.		0.901	0.895							0.875

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana N Leg VOL
Date Start: 26-Aug-15
Date End: 27-Aug-15
Montana \& Ustick - North Leg Caldwell, Idaho Site Code: N Leg

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana S Leg VOL Date Start: 26-Aug-15 Date End: 27-Aug-15 Montana \& Ustick - South Leg Caldwell, Idaho Site Code: S Leg

Start Time	$\begin{gathered} 26-A u g-15 \\ \text { Wed } \end{gathered}$	SB	NB							Total
12:00 AM		*	*							*
12:15		*	*							*
12:30		*	*							*
12:45		*	*							*
01:00		*	*							*
01:15		*	*							*
01:30		*	*							*
01:45		*	*							*
02:00		*	*							*
02:15		*	*							*
02:30		*	*							*
02:45		*	*							*
03:00		*	*							*
03:15		*	*							*
03:30		*	*							*
03:45		*	*							*
04:00		*	*							*
04:15		*	*							*
04:30		*	*							*
04:45		*	*							*
05:00		*	*							*
05:15		*	*							*
05:30		*	*							*
05:45		*	*							*
06:00		6	18							24
06:15		13	22							35
06:30		10	27							37
06:45		10	17							27
07:00		22	29							51
07:15		52	52							104
07:30		44	51							95
07:45		54	44							98
08:00		66	40							106
08:15		71	78							149
08:30		30	35							65
08:45		21	27							48
09:00		16	18							34
09:15		18	15							33
09:30		19	24							43
09:45		28	20							48
10:00		15	8							23
10:15		11	25							36
10:30		11	22							33
10:45		15	17							32
11:00		16	18							34
11:15		18	23							41
11:30		20	15							35
11:45		17	19							36
Total		603	664							1267
Percent		47.6\%	52.4\%							
Peak	-	07:30	07:30	-	-	-	-	-	-	07:30
Vol.	-	235	213	-	-	-	-	-	-	448
P.H.F.		0.827	0.683							0.752

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana S Leg VOL Date Start: 26-Aug-15 Date End: 27-Aug-15 Montana \& Ustick - South Leg Caldwell, Idaho Site Code: S Leg

Start Time	$\begin{gathered} \text { 26-Aug-15 } \\ \text { Wed } \end{gathered}$	SB	NB							Total
12:00 PM		25	32							57
12:15		24	27							51
12:30		30	16							46
12:45		19	29							48
01:00		38	27							65
01:15		17	24							41
01:30		19	20							39
01:45		21	35							56
02:00		26	23							49
02:15		21	20							41
02:30		24	28							52
02:45		34	34							68
03:00		47	32							79
03:15		61	21							82
03:30		56	53							109
03:45		38	84							122
04:00		41	41							82
04:15		33	28							61
04:30		30	42							72
04:45		48	28							76
05:00		52	31							83
05:15		48	31							79
05:30		42	48							90
05:45		51	36							87
06:00		61	36							97
06:15		44	53							97
06:30		29	53							82
06:45		25	29							54
07:00		36	31							67
07:15		23	27							50
07:30		33	19							52
07:45		25	20							45
08:00		23	23							46
08:15		33	21							54
08:30		22	25							47
08:45		26	14							40
09:00		20	10							30
09:15		30	13							43
09:30		15	15							30
09:45		13	12							25
10:00		9	12							21
10:15		13	6							19
10:30		15	11							26
10:45		9	9							18
11:00		1	2							3
11:15		2	2							4
11:30		7	6							13
11:45		6	3							9
Total		1365	1242							2607
Percent		52.4\%	47.6\%							
Peak	-	15:00	15:30	-	-	-	-	-	-	15:15
Vol.	-	202	206	-	-	-	-	-	-	395
P.H.F.		0.828	0.613							0.809

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana S Leg VOL Date Start: 26-Aug-15 Date End: 27-Aug-15 Montana \& Ustick - South Leg Caldwell, Idaho Site Code: S Leg

Start Time	$\begin{gathered} \text { 27-Aug-15 } \\ \text { Thu } \\ \hline \end{gathered}$	SB	NB							Total
12:00 AM		6	2							8
12:15		9	1							10
12:30		7	0							7
12:45		4	1							5
01:00		0	1							1
01:15		2	1							3
01:30		3	1							4
01:45		2	1							3
02:00		1	1							2
02:15		2	3							5
02:30		2	4							6
02:45		1	3							4
03:00		2	0							2
03:15		2	4							6
03:30		0	0							0
03:45		1	2							3
04:00		1	0							1
04:15		1	3							4
04:30		1	1							2
04:45		5	8							13
05:00		3	5							8
05:15		3	9							12
05:30		4	8							12
05:45		11	15							26
06:00		*	*							*
06:15		*	*							*
06:30		*	*							*
06:45		*	*							*
07:00		*	*							*
07:15		*	*							*
07:30		*	*							*
07:45		*	*							*
08:00		*	*							*
08:15		*	*							*
08:30		*	*							*
08:45		*								*
09:00		*	*							*
09:15		*	*							*
09:30		*	*							*
09:45		*	*							*
10:00		*	*							*
10:15		*	*							*
10:30		*	*							*
10:45		*	*							*
11:00		*	*							*
11:15		*	*							*
11:30		*	*							*
11:45		*	*							*
Total		73	74							147
Percent		49.7\%	50.3\%							
Peak	-	12:00	05:00	-	-	-	-	-	-	05:00
Vol.	-	26	37	-	-	-	-	-	-	58
P.H.F.		0.722	0.617							0.558
Grand Total		2041	1980							4021
Percent		50.8\%	49.2\%							

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Ustick b Montana \& Indiana VOL Date Start: 26-Aug-15 Date End: 28-Aug-15 Ustick Road between Montana \& Indiana Caldwell, Idaho Site Code:

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Ustick b Montana \& Indiana VOL Date Start: 26-Aug-15 Date End: 28-Aug-15 Ustick Road between Montana \& Indiana Caldwell, Idaho Site Code:

Start Time	$\begin{gathered} \text { 26-Aug-15 } \\ \text { Wed } \end{gathered}$	WB	EB							Total
12:00 PM		68	66							134
12:15		70	88							158
12:30		88	64							152
12:45		85	64							149
01:00		84	76							160
01:15		85	56							141
01:30		72	72							144
01:45		78	91							169
02:00		96	78							174
02:15		96	86							182
02:30		97	106							203
02:45		102	102							204
03:00		118	160							278
03:15		138	60							198
03:30		131	131							262
03:45		108	198							306
04:00		136	104							240
04:15		103	84							187
04:30		94	112							206
04:45		120	96							216
05:00		118	102							220
05:15		118	98							216
05:30		117	108							225
05:45		124	100							224
06:00		126	98							224
06:15		104	100							204
06:30		110	84							194
06:45		91	86							177
07:00		0	0							0
07:15		0	0							0
07:30		0	0							0
07:45		0	0							0
08:00		0	0							0
08:15		0	0							0
08:30		0	0							0
08:45		0	0							0
09:00		0	0							0
09:15		0	0							0
09:30		0	0							0
09:45		0	0							0
10:00		0	0							0
10:15		0	0							0
10:30		0	0							0
10:45		0	0							0
11:00		0	0							0
11:15		0	0							0
11:30		0	0							0
11:45		0	0							0
Total		2877	2670							5547
Percent		51.9\%	48.1\%							
Peak	-	15:15	15:00	-	-	-	-	-	-	15:00
Vol.	-	513	549	-	-	-	-	-	-	1044
P.H.F.		0.929	0.693							0.853

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Ustick b Montana \& Indiana VOL Date Start: 26-Aug-15 Date End: 28-Aug-15 Ustick Road between Montana \& Indiana Caldwell, Idaho Site Code:

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Ustick b Montana \& Indiana VOL Date Start: 26-Aug-15 Date End: 28-Aug-15 Ustick Road between Montana \& Indiana Caldwell, Idaho Site Code:

Start Time	$\begin{aligned} & \text { 27-Aug-15 } \\ & \text { Thu } \end{aligned}$	WB	EB						Total
12:00 PM		70	69						139
12:15		78	74						152
12:30		55	82						137
12:45		66	79						145
01:00		66	62						128
01:15		76	63						139
01:30		74	58						132
01:45		92	89						181
02:00		97	80						177
02:15		76	68						144
02:30		100	90						190
02:45		86	112						198
03:00		120	132						252
03:15		114	88						202
03:30		108	120						228
03:45		96	172						268
04:00		122	110						232
04:15		112	115						227
04:30		94	114						208
04:45		90	101						191
05:00		122	92						214
05:15		120	123						243
05:30		119	106						225
05:45		132	125						257
06:00		107	117						224
06:15		130	117						247
06:30		125	96						221
06:45		76	77						153
07:00		106	67						173
07:15		88	68						156
07:30		89	56						145
07:45		88	103						191
08:00		118	66						184
08:15		92	58						150
08:30		75	62						137
08:45		88	50						138
09:00		55	43						98
09:15		65	33						98
09:30		49	39						88
09:45		52	31						83
10:00		35	21						56
10:15		24	20						44
10:30		22	20						42
10:45		33	12						45
11:00		27	12						39
11:15		15	17						32
11:30		19	13						32
11:45		16	5						21
Total		3879	3527						7406
Percent		52.4\%	47.6\%						
Peak	-	17:45	15:30	- -	-	-	-	-	15:30
Vol.	-	494	517	-	-	-	-	-	955
P.H.F.		0.936	0.751						0.891

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Ustick b Montana \& Indiana VOL Date Start: 26-Aug-15 Date End: 28-Aug-15 Ustick Road between Montana \& Indiana Caldwell, Idaho Site Code:

Start Time	$\begin{gathered} \text { 28-Aug-15 } \\ \text { Fri } \end{gathered}$	WB	EB							Total
12:00 AM		18	8							26
12:15		8	10							18
12:30		7	5							12
12:45		12	6							18
01:00		6	1							7
01:15		5	5							10
01:30		8	2							10
01:45		5	4							9
02:00		6	2							8
02:15		1	0							1
02:30		2	1							3
02:45		3	3							6
03:00		2	2							4
03:15		2	1							3
03:30		3	3							6
03:45		4	5							9
04:00		4	4							8
04:15		2	13							15
04:30		1	13							14
04:45		8	7							15
05:00		8	22							30
05:15		8	15							23
05:30		14	26							40
05:45		16	29							45
06:00		25	32							57
06:15		*	*							*
06:30		*	*							*
06:45		*	*							*
07:00		*	*							*
07:15		*	*							*
07:30		*	*							*
07:45		*	*							*
08:00		*	*							*
08:15		*	*							*
08:30		*	*							*
08:45		*	*							*
09:00		*	*							*
09:15		*	*							*
09:30		*	*							*
09:45		*	*							*
10:00		*	*							*
10:15		*	*							*
10:30		*	*							*
10:45		*	*							*
11:00		*	*							*
11:15		*	*							*
11:30		*	*							*
11:45		*	*							*
Total		178	219							397
Percent		44.8\%	55.2\%							
Peak	-	05:15	05:15	-	-	-	-	-	-	05:15
Vol.	-	63	102	-	-	-	-	-	-	165
P.H.F.		0.630	0.797							0.724
Grand Total		9742	10329							20071
Percent		48.5\%	51.5\%							

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana W Leg VOL
Date Start: 26-Aug-15 Date End: 27-Aug-15 Montana \& Ustick - West Leg Caldwell, Idaho Site Code: W Leg

Start Time	$\begin{gathered} \text { 26-Aug-15 } \\ \text { Wed } \end{gathered}$	WB	EB							Total	
12:00 AM		*	*								*
12:15		*	*								*
12:30		*	*								*
12:45		*	*								*
01:00		*	*								*
01:15		*	*								*
01:30		*	*								*
01:45		*	*								*
02:00		*	*								*
02:15		*	*								*
02:30		*	*								*
02:45		*	*								*
03:00		*	*								*
03:15		*	*								*
03:30		*	*								*
03:45		*	*								*
04:00		*	*								*
04:15		*	*								*
04:30		*	*								*
04:45		*	*								*
05:00		*	*								*
05:15		*	*								*
05:30		*	*								*
05:45		*	*								*
06:00		22	25							47	7
06:15		33	34							67	7
06:30		42	50							92	2
06:45		45	54							99	
07:00		33	71							104	
07:15		65	122							187	
07:30		112	132							244	
07:45		95	136							231	
08:00		58	77							135	
08:15		65	70							135	
08:30		44	83							127	
08:45		55	62							117	
09:00		50	52							102	
09:15		35	65							100	
09:30		40	65							105	
09:45		49	57							106	
10:00		44	50							94	
10:15		38	55							93	
10:30		60	55							115	
10:45		52	66							118	
11:00		56	50							106	
11:15		56	75							131	
11:30		43	72							115	
11:45		66	61							127	
Total		1258	1639							2897	
Percent		43.4\%	56.6\%								
Peak	-	07:15	07:15	-	-	-	-	-	-	07:15	
Vol.	-	330	467	-	-	-	-	-	-	797	
P.H.F.		0.737	0.858							0.817	

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

Ustick \& Montana W Leg VOL
Date Start: 26-Aug-15 Date End: 27-Aug-15 Montana \& Ustick - West Leg Caldwell, Idaho Site Code: W Leg

Start Time	26-Aug-15 Wed	WB	EB							Total
12:00 PM		67	62							129
12:15		56	65							121
12:30		77	50							127
12:45		76	47							123
01:00		67	64							131
01:15		78	47							125
01:30		61	62							123
01:45		70	72							142
02:00		76	67							143
02:15		90	85							175
02:30		87	88							175
02:45		95	100							195
03:00		127	100							227
03:15		106	70							176
03:30		110	96							206
03:45		109	96							205
04:00		114	77							191
04:15		97	78							175
04:30		97	96							193
04:45		105	96							201
05:00		96	90							186
05:15		106	73							179
05:30		107	93							200
05:45		106	98							204
06:00		98	92							190
06:15		111	70							181
06:30		103	69							172
06:45		82	79							161
07:00		67	75							142
07:15		77	59							136
07:30		88	63							151
07:45		62	44							106
08:00		70	44							114
08:15		74	51							125
08:30		58	53							111
08:45		49	46							95
09:00		46	39							85
09:15		44	32							76
09:30		47	39							86
09:45		31	19							50
10:00		32	21							53
10:15		28	22							50
10:30		25	17							42
10:45		16	7							23
11:00		17	9							26
11:15		19	4							23
11:30		12	11							23
11:45		9	6							15
Total		3445	2843							6288
Percent		54.8\%	45.2\%							
Peak	-	15:00	14:15	-	-	-	-	-	-	15:00
Vol.	-	452	373	-	-	-	-	-	-	814
P.H.F.		0.890	0.933							0.896

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Vehicle Volume

2DataCollection.com
Idaho (208) 860-7554 Utah (801) 431-2993

Ustick \& Montana W Leg VOL
Date Start: 26-Aug-15 Date End: 27-Aug-15 Montana \& Ustick - West Leg Caldwell, Idaho Site Code: W Leg

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Indiana N of Usitck VOL
Idaho (208) 860-7554 Utah (801) 431-2993

Date Start: 26-Aug-15 Date End: 28-Aug-15 Indiana Ave north of Ustick Road Caldwell, Idaho Site Code: 18419

Start Time	$\begin{gathered} \text { 26-Aug-15 } \\ \text { Wed } \end{gathered}$	SB	NB						Total		
12:00 AM		*	*								*
12:15		*	*								*
12:30		*	*								*
12:45		*	*								*
01:00		*	*								*
01:15		*	*								*
01:30		*	*								*
01:45		*	*								*
02:00		*	*								*
02:15		*	*								*
02:30		*	*								*
02:45		*	*								*
03:00		*	*								*
03:15		*	*								*
03:30		*	*								*
03:45		*	*								*
04:00		*	*								*
04:15		*	*								*
04:30		*	*								*
04:45		*	*								*
05:00		*	*								*
05:15		*	*								*
05:30		14	14							28	8
05:45		17	28							45	5
06:00		32	34							66	6
06:15		14	28							42	
06:30		24	50							74	4
06:45		38	56							94	4
07:00		38	64							102	
07:15		70	114							184	
07:30		98	146							244	
07:45		100	132							232	
08:00		60	60							120	
08:15		59	46							105	
08:30		38	65							103	
08:45		40	48							88	8
09:00		46	54							100	
09:15		47	45							92	2
09:30		37	48							85	5
09:45		26	50							76	6
10:00		44	47							91	1
10:15		42	43							85	5
10:30		40	43							83	3
10:45		35	52							87	7
11:00		41	40							81	1
11:15		68	36							104	
11:30		46	36							82	2
11:45		50	39							89	9
Total		1164	1418							2582	
Percent		45.1\%	54.9\%								
Peak	-	07:15	07:00	-	-	-	-	-	-	07:15	
Vol.	-	328	456	-	-	-	-	-	-	780	
P.H.F.		0.820	0.781							0.799	

L2 Data Collection

Study: SIX0036
Type: Volume / Direction
Tech: Judd
Count: Axle Hits / 2

Indiana N of Usitck VOL
Idaho (208) 860-7554 Utah (801) 431-2993

Date Start: 26-Aug-15 Date End: 28-Aug-15
Indiana Ave north of Ustick Road Caldwell, Idaho Site Code: 18419

Start Time	$\begin{gathered} \text { 26-Aug-15 } \\ \text { Wed } \end{gathered}$	SB	NB							Total
12:00 PM		60	40							100
12:15		46	50							96
12:30		50	37							87
12:45		43	51							94
01:00		61	45							106
01:15		43	38							81
01:30		27	42							69
01:45		41	38							79
02:00		72	47							119
02:15		62	50							112
02:30		0	0							0
02:45		0	0							0
03:00		0	0							0
03:15		0	0							0
03:30		0	0							0
03:45		0	0							0
04:00		0	0							0
04:15		0	0							0
04:30		0	0							0
04:45		0	0							0
05:00		0	0							0
05:15		0	0							0
05:30		0	0							0
05:45		0	0							0
06:00		0	0							0
06:15		0	0							0
06:30		0	0							0
06:45		0	0							0
07:00		0	0							0
07:15		0	0							0
07:30		0	0							0
07:45		0	0							0
08:00		0	0							0
08:15		0	0							0
08:30		0	0							0
08:45		0	0							0
09:00		0	0							0
09:15		0	0							0
09:30		0	0							0
09:45		0	0							0
10:00		0	0							0
10:15		0	0							0
10:30		0	0							0
10:45		0	0							0
11:00		0	0							0
11:15		0	0							0
11:30		0	0							0
11:45		0	0							0
Total		505	438							943
Percent		53.6\%	46.4\%							
Peak	-	13:30	12:15	-	-	-	-	-	-	12:15
Vol.	-	202	183	-	-	-	-	-	-	383
P.H.F.		0.701	0.897							0.903

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Indiana N of Usitck VOL
Idaho (208) 860-7554 Utah (801) 431-2993

Date Start: 26-Aug-15 Date End: 28-Aug-15 Indiana Ave north of Ustick Road Caldwell, Idaho Site Code: 18419

Start Time	$\begin{gathered} \text { 27-Aug-15 } \\ \text { Thu } \\ \hline \end{gathered}$	SB	NB							Total
12:00 AM		0	0							0
12:15		0	0							0
12:30		0	0							0
12:45		0	0							0
01:00		0	0							0
01:15		0	0							0
01:30		0	0							0
01:45		0	0							0
02:00		0	0							0
02:15		0	0							0
02:30		0	0							0
02:45		0	0							0
03:00		0	0							0
03:15		0	0							0
03:30		0	0							0
03:45		0	0							0
04:00		0	0							0
04:15		0	0							0
04:30		0	0							0
04:45		0	0							0
05:00		0	0							0
05:15		0	0							0
05:30		0	0							0
05:45		0	0							0
06:00		16	26							42
06:15		26	29							55
06:30		26	47							73
06:45		38	65							103
07:00		48	56							104
07:15		59	115							174
07:30		88	153							241
07:45		90	122							212
08:00		66	70							136
08:15		54	63							117
08:30		30	64							94
08:45		38	52							90
09:00		40	53							93
09:15		32	42							74
09:30		39	48							87
09:45		32	48							80
10:00		48	36							84
10:15		51	37							88
10:30		32	40							72
10:45		47	37							84
11:00		39	47							86
11:15		56	56							112
11:30		50	40							90
11:45		40	64							104
Total		1085	1410							2495
Percent		43.5\%	56.5\%							
Peak	-	07:15	07:15	-	-	-	-	-	-	07:15
Vol.	-	303	460	-	-	-	-	-	-	763
P.H.F.		0.842	0.752							0.791

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Indiana N of Usitck VOL Date Start: 26-Aug-15 Date End: 28-Aug-15 Indiana Ave north of Ustick Road Caldwell, Idaho Site Code: 18419

L2 Data Collection

Study: SIX0036
Type: Volume / Direction Tech: Judd
Count: Axle Hits / 2

Indiana N of Usitck VOL
Idaho (208) 860-7554 Utah (801) 431-2993

Date Start: 26-Aug-15 Date End: 28-Aug-15 Indiana Ave north of Ustick Road Caldwell, Idaho Site Code: 18419

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Montana Ave / Ustick Road
City: Caldwell, Idaho
Control: Stop Sign

File Name : Montana \& Ustick
Site Code : 00000000
Start Date : 8/26/2015
Page No : 1

Groups Printed- General Traffic

	Montana Avenue From North					Ustick Road From East					Montana Avenue From South					Ustick Road From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	2	6	2	1	11	4	27	8	0	39	21	4	4	0	29	8	58	5	0	71	150
07:15 AM	4	4	7	0	15	12	54	34	0	100	29	16	7	1	53	14	98	10	2	124	292
07:30 AM	15	15	6	0	36	14	92	21	0	127	35	11	5	0	51	8	115	9	1	133	347
07:45 AM	10	7	4	0	21	11	80	34	0	125	30	9	5	0	44	13	114	9	1	137	327
Total	31	32	19	1	83	41	253	97	0	391	115	40	21	1	177	43	385	33	4	465	1116
08:00 AM	5	15	3	0	23	7	47	31	0	85	29	5	6	0	40	20	47	10	0	77	225
08:15 AM	18	21	5	0	44	10	36	30	0	76	50	17	11	0	78	20	44	6	0	70	268
08:30 AM	10	12	12	4	38	7	28	9	1	45	18	11	6	0	35	9	64	10	0	83	201
08:45 AM	7	13	6	0	26	7	41	4	0	52	10	10	7	0	27	4	51	7	1	63	168
Total	40	61	26	4	131	31	152	74	1	258	107	43	30	0	180	53	206	33	1	293	862

04:00 PM	10	10	6	0	26	13	96	23	0	132	20	13	8	0	41	8	63	6	0	77	276
04:15 PM	7	15	3	1	26	5	84	13	0	102	11	11	6	0	28	5	65	8	1	79	235
04:30 PM	15	8	8	0	31	12	75	10	0	97	25	10	7	0	42	12	73	11	0	96	266
04:45 PM	11	14	5	0	30	9	91	21	0	121	14	11	3	0	28	13	76	7	0	96	275
Total	43	47	22	1	113	39	346	67	0	452	70	45	24	0	139	38	277	32	1	348	1052
05:00 PM	11	19	6	0	36	10	82	25	0	117	12	16	3	0	31	8	73	9	2	92	276
05:15 PM	13	14	11	0	38	11	88	26	0	125	18	8	5	0	31	8	56	9	0	73	267
05:30 PM	11	15	7	0	33	6	92	17	0	115	27	17	4	0	48	10	75	8	0	93	289
05:45 PM	11	11	3	0	25	7	90	30	0	127	16	15	5	0	36	10	78	10	0	98	286
Total	46	59	27	0	132	34	352	98	0	484	73	56	17	0	146	36	282	36	2	356	1118
Grand Total	160	199	94	6	459	145	1103	336	1	1585	365	184	92	1	642	170	1150	134	8	1462	4148
Apprch \%	34.9	43.4	20.5	1.3		9.1	69.6	21.2	0.1		56.9	28.7	14.3	0.2		11.6	78.7	9.2	0.5		
Total \%	3.9	4.8	2.3	0.1	11.1	3.5	26.6	8.1	0	38.2	8.8	4.4	2.2	0	15.5	4.1	27.7	3.2	0.2	35.2	

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Montana Ave / Ustick Road
City: Caldwell, Idaho
Control: Stop Sign

File Name : Montana \& Ustick
Site Code : 00000000
Start Date : 8/26/2015 Page No : 2

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Montana Ave / Ustick Road
City: Caldwell, Idaho
Control: Stop Sign

File Name : Montana \& Ustick
Site Code : 00000000
Start Date : 8/26/2015
Page No : 3

	Montana Avenue From North					Ustick Road From East					Montana Avenue From South					Ustick Road From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:15 AM																					
07:15 AM	4	4	7	0	15	12	54	34	0	100	29	16	7	1	53	14	98	10	2	124	292
07:30 AM	15	15	6	0	36	14	92	21	0	127	35	11	5	0	51	8	115	9	1	133	347
07:45 AM	10	7	4	0	21	11	80	34	0	125	30	9	5	0	44	13	114	9	1	137	327
08:00 AM	5	15	3	0	23	7	47	31	0	85	29	5	6	0	40	20	47	10	0	77	225
Total Volume	34	41	20	0	95	44	273	120	0	437	123	41	23	1	188	55	374	38	4	471	1191
\% App. Total	35.8	43.2	21.1	0		10.1	62.5	27.5	0		65.4	21.8	12.2	0.5		11.7	79.4	8.1	0.8		
PHF	. 567	. 683	. 714	. 000	. 660	. 786	. 742	. 882	. 000	. 860	. 879	. 641	. 821	. 250	. 887	. 688	. 813	. 950	. 500	. 859	858

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Montana Ave / Ustick Road
City: Caldwell, Idaho
Control: Stop Sign

File Name : Montana \& Ustick
Site Code : 00000000
Start Date : 8/26/2015
Page No : 4

	Montana Avenue From North					Ustick Road From East					Montana Avenue From South					Ustick Road From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App.	Right	Thru	Left	Peds	App.	Right	Thru	Left	Peds	App. Total	Int. Tot

Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	08:00 AM					07:15 AM					07:30 AM					07:15 AM				
+0 mins.	5	15	3	0	23	12	54	34	0	100	35	11	5	0	51	14	98	10	2	124
+15 mins.	18	21	5	0	44	14	92	21	0	127	30	9	5	0	44	8	115	9	1	133
+30 mins.	10	12	12	4	38	11	80	34	0	125	29	5	6	0	40	13	114	9	1	137
+45 mins.	7	13	6	0	26	7	47	31	0	85	50	17	11	0	78	20	47	10	0	77
Total Volume	40	61	26	4	131	44	273	120	0	437	144	42	27	0	213	55	374	38	4	471
\% App. Total	30.5	46.6	19.8	3.1		10.1	62.5	27.5	0		67.6	19.7	12.7	0		11.7	79.4	8.1	0.8	
PHF	. 556	. 726	. 542	. 250	. 744	. 786	. 742	. 882	. 000	. 860	. 720	. 618	. 614	. 000	. 683	. 688	. 813	. 950	. 500	. 859

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993
Study: SIX0036
Intersection: Montana Ave / Ustick Road
File Name: Montana \& Ustick
City: Caldwell, Idaho
Control: Stop Sign
Site Code : 00000000
Start Date : 8/26/2015
Page No : 5

	Montana Avenue From North					Ustick Road From East					Montana Avenue From South					Ustick Road From West					
Start Time	Rig ht	Thr u	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Rig ht	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \\ \hline \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Right	Thr u	Left	Peds	App. Total	Right	Thr u	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 05:00 PM																					
05:00 PM	11	19	6	0	36	10	82	25	0	117	12	16	3	0	31	8	73	9	2	92	276
05:15 PM	13	14	11	0	38	11	88	26	0	125	18	8	5	0	31	8	56	9	0	73	267
05:30 PM	11	15	7	0	33	6	92	17	0	115	27	17	4	0	48	10	75	8	0	93	289
05:45 PM	11	11	3	0	25	7	90	30	0	127	16	15	5	0	36	10	78	10	0	98	286
Total Volume	46	59	27	0	132	34	352	98	0	484	73	56	17	0	146	36	282	36	2	356	1118
\% App. Total	34.8	44.7	20.5	0		7	72.7	20.2	0		50	38.4	11.6	0		10.1	79.2	10.1	0.6		
PHF	. 885	. 776	. 614	. 000	. 868	. 773	. 957	. 817	. 000	. 953	676	. 824	. 850	. 000	. 760	. 900	. 904	. 900	250	. 908	967

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Montana Ave / Ustick Road
City: Caldwell, Idaho
Control: Stop Sign

File Name : Montana \& Ustick
Site Code : 00000000
Start Date : 8/26/2015
Page No : 6

	Montana Avenue From North					Ustick Road From East					Montana Avenue From South					Ustick Road From West					
Start Time	Rig ht	Thr u	Left	Ped s	App. Toal	Rig ht	Thr u	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Right	Thr u	Left	Peds	App. Total	Right	Thr u	Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:45 PM					05:00 PM					05:00 PM					04:15 PM				
+0 mins.	11	14	5	0	30	10	82	25	0	117	12	16	3	0	31	5	65	8	1	79
+15 mins.	11	19	6	0	36	11	88	26	0	125	18	8	5	0	31	12	73	11	0	96
+30 mins.	13	14	11	0	38	6	92	17	0	115	27	17	4	0	48	13	76	7	0	96
+45 mins.	11	15	7	0	33	7	90	30	0	127	16	15	5	0	36	8	73	9	2	92
Total Volume	46	62	29	0	137	34	352	98	0	484	73	56	17	0	146	38	287	35	3	363
\% App. Total	33.6	45.3	21.2	0		7	72.7	20.2	0		50	38.4	11.6	0		10.5	79.1	9.6	0.8	
PHF	. 885	. 816	. 659	. 000	. 901	. 773	. 957	. 817	. 000	. 953	. 676	. 824	. 850	. 000	. 760	731	. 944	. 795	. 375	. 945

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Montana Ave / Ustick Road City: Caldwell, Idaho
Control: Stop Sign

File Name : Montana \& Ustick
Site Code : 00000000
Start Date : 8/26/2015
Page No : 7

Image 1

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Indiana Ave / Ustick Road
City: Caldwell, Idaho
Control: All Yields

File Name: Indiana \& Ustick RDBT
Site Code : RDBT
Start Date : 8/26/2015
Page No : 1

Groups Printed- General Traffic - turn

	Indiana Avenue From North					Ustick Road From East					Indiana Avenue From South					Ustick Road From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	42	33	12	0	87	13	81	8	0	102	17	29	8	0	54	8	69	24	0	101	344
04:15 PM	24	29	12	0	65	12	63	19	0	94	10	28	7	0	45	8	65	14	0	87	291
04:30 PM	24	24	16	0	64	18	64	9	0	91	7	34	9	0	50	5	86	15	0	106	311
04:45 PM	34	41	14	0	89	27	77	15	0	119	12	29	7	0	48	7	60	24	0	91	347
Total	124	127	54	0	305	70	285	51	0	406	46	120	31	0	197	28	280	77	0	385	1293
05:00 PM	33	41	21	0	95	25	82	11	0	118	7	37	9	0	53	10	66	25	0	101	367
05:15 PM	35	49	18	0	102	31	75	15	0	121	21	35	6	0	62	7	63	26	0	96	381
05:30 PM	37	49	29	0	115	19	75	19	0	113	14	36	3	0	53	1	86	23	0	110	391
05:45 PM	46	51	13	0	110	40	76	17	0	133	7	44	9	0	60	0	55	39	0	94	397
Total	151	190	81	0	422	115	308	62	0	485	49	152	27	0	228	18	270	113	0	401	1536
Grand Total	275	317	135	0	727	185	593	113	0	891	95	272	58	0	425	46	550	190	0	786	2829
Apprch \%	37.8	43.6	18.6	0		20.8	66.6	12.7	0		22.4	64	13.6	0		5.9	70	24.2	0		
Total \%	9.7	11.2	4.8	0	25.7	6.5	21	4	0	31.5	3.4	9.6	2.1	0	15	1.6	19.4	6.7	0	27.8	
General Traffic	275	317	134	0	726	185	593	109	0	887	95	272	58	0	425	46	550	188	0	784	2822
\% General Traffic	100	100	99.3	0	99.9	100	100	96.5	0	99.6	100	100	100	0	100	100	100	98.9	0	99.7	99.8
U-turn	0	0	1	0	1	0	0	4	0	4	0	0	0	0	0	0	0	2	0	2	7
\% U-turn	0	0	0.7	0	0.1	0	0	3.5	0	0.4	0	0	0	0	0	0	0	1.1	0	0.3	0.2

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993
Study: SIX0036
Intersection: Indiana Ave / Ustick Road
File Name: Indiana \& Ustick RDBT
City: Caldwell, Idaho
Site Code : RDBT
Start Date : 8/26/2015
Page No : 2

	Indiana Avenue From North					Ustick Road From East					Indiana Avenue From South					Ustick Road From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 05:00 PM																					
05:00 PM	33	41	21	0	95	25	82	11	0	118	7	37	9	0	53	10	66	25	0	101	367
05:15 PM	35	49	18	0	102	31	75	15	0	121	21	35	6	0	62	7	63	26	0	96	381
05:30 PM	37	49	29	0	115	19	75	19	0	113	14	36	3	0	53	1	86	23	0	110	391
05:45 PM	46	51	13	0	110	40	76	17	0	133	7	44	9	0	60	0	55	39	0	94	397
Total Volume	151	190	81	0	422	115	308	62	0	485	49	152	27	0	228	18	270	113	0	401	1536
\% App. Total	35.8	45	19.2	0		23.7	63.5	12.8	0		21.5	66.7	11.8	0		4.5	67.3	28.2	0		
PHF	. 821	. 931	. 698	. 000	. 917	. 719	. 939	. 816	. 000	. 912	. 583	. 864	. 750	. 000	. 919	. 450	. 785	. 724	. 000	. 911	. 967

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Indiana Ave / Ustick Road
City: Caldwell, Idaho
Control: All Yields

File Name: Indiana \& Ustick RDBT
Site Code : RDBT
Start Date : 8/26/2015
Page No : 3

	Indiana Avenue From North					Ustick Road From East					Indiana Avenue From South					Ustick Road From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:																					
	05:00 PM					05:00 PM					05:00 PM					05:00 PM					
+0 mins.	33	41	21	0	95	25	82	11	0	118	7	37	9	0	53	10	66	25	0	101	
+15 mins.	35	49	18	0	102	31	75	15	0	121	21	35	6	0	62	7	63	26	0	96	
+30 mins.	37	49	29	0	115	19	75	19	0	113	14	36	3	0	53	1	86	23	0	110	
+45 mins.	46	51	13	0	110	40	76	17	0	133	7	44	9	0	60	0	55	39	0	94	
Total Volume	151	190	81	0	422	115	308	62	0	485	49	152	27	0	228	18	270	113	0	401	
\% App. Total	35.8	45	19.2	0		23.7	63.5	12.8	0		21.5	66.7	11.8	0		4.5	67.3	28.2	0		
PHF	. 821	. 931	. 698	. 000	. 917	. 719	. 939	. 816	. 000	. 912	. 583	. 864	. 750	. 000	. 919	. 450	. 785	. 724	. 000	. 911	

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: SIX0036
Intersection: Indiana Ave / Ustick Road City: Caldwell, Idaho Control: All Yields

File Name : Indiana \& Ustick RDBT
Site Code : RDBT
Start Date : 8/26/2015
Page No : 4

Image 1

Intersection Int Delay, S/veh 12.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	38	374	55	120	273	44	23	41	123	20	41	34
Future Vol, veh/h	38	374	55	120	273	44	23	41	123	20	41	34
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	100	-	0	100	-	225	-	-	-		-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-		0			0	
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	44	435	64	140	317	51	27	48	143	23	48	40

Major/Minor	Major1		Major2					Minor1			Minor2			
Conflicting Flow All	317	0	0		435	0		0	1163	1120	435	1216	1120	317
Stage 1		-	-		-	-		-	523	523		597	597	
Stage 2		-	-			-		-	640	597		619	523	
Critical Hdwy	4.12	-	-		4.12	-		-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-		-	-		-	6.12	5.52		6.12	5.52	
Critical Hdwy Stg 2		-	-		-	-		-	6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218	-	-		2.218	-		-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1243	-	-		1125	-		-	172	206	621	158	206	724
Stage 1		-	-		-	-		-	537	530		490	491	
Stage 2	-	-	-		-	-		-	464	491		476	530	
Platoon blocked, \%		-	-			-		-						
Mov Cap-1 Maneuver	1243	-			1125	-		-	114	174	621	85	174	724
Mov Cap-2 Maneuver	-	-	-		-	-		-	114	174	-	85	174	
Stage 1	-	-	-		-	-		-	518	511		473	430	
Stage 2	-	-	-		-	-		-	341	430		320	511	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0.7				2.4				45.3			50.8		
HCM LOS									E			F		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	R SBLn1						
Capacity (veh/h)	294	1243	-	-	1125	-		183						
HCM Lane V/C Ratio	0.74	0.036	-		0.124	-	-	- 0.604						
HCM Control Delay (s)	45.3	8	-	-	8.7	-	-	50.8						
HCM Lane LOS	E	A	-	-	A	-		F						
HCM 95th \%tile Q(veh)	5.4	0.1	-	-	0.4	-		3.3						

Six Mile Engineering, PA
September 2015

Ustick Road, Montana to Indiana, Pre-Concept COMPASS Project No. 2015-16

Major/Minor	Major1		Major2					Minor1			Minor2			
Conflicting Flow All	363	0	0		291	0		0	984	930	291	996	930	363
Stage 1		-	.			-		-	365	365		565	565	
Stage 2		-	-			-		-	619	565		431	365	
Critical Hdwy	4.12	-	-		4.12	-		-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-			-		-	6.12	5.52		6.12	5.52	
Critical Hdwy Stg 2		-	-			-		-	6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218	-	-		2.218	-		-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1196	-	-		1271	-		-	228	267	748	223	267	682
Stage 1		-	-			-		-	654	623	-	510	508	
Stage 2	-	-	-			-		-	476	508		603	623	
Platoon blocked, \%		-	-			-		-						
Mov Cap-1 Maneuver	1196	-	-		1271	-		-	157	238	748	150	238	682
Mov Cap-2 Maneuver	-	-	-		-	-		-	157	238	-	150	238	
Stage 1	-	-	-			-		-	634	604		494	468	
Stage 2	-	-	-		-	-		-	355	468	-	475	604	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0.8				1.6				24.6			31.9		
HCM LOS									C			D		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	R SBLn1						
Capacity (veh/h)	331	1196	-	-	1271	-		- 266						
HCM Lane V/C Ratio	0.455	0.031	-		0.079	-	-	- 0.512						
HCM Control Delay (s)	24.6	8.1	-	-	8.1	-	-	31.9						
HCM Lane LOS	C	A	-	-	A	-		D						
HCM 95th \%tile Q(veh)	2.3	0.1		-	0.3			2.7						

Six Mile Engineering, PA
September 2015

Ustick Road, Montana to Indiana, Pre-Concept COMPASS Project No. 2015-16

LEVEL OF SERVICE

Site: 2015 Existing PM

Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2015 Existing PM

Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	28	2.0	0.267	6.9	LOS A	1.1	28.1	0.54	0.50	31.3
8	T1	157	2.0	0.267	6.9	LOS A	1.1	28.1	0.54	0.50	31.1
18	R2	51	2.0	0.267	6.9	LOS A	1.1	28.1	0.54	0.50	30.2
Appr		235	2.0	0.267	6.9	LOS A	1.1	28.1	0.54	0.50	30.9
East: Ustick Rd											
1	L2	64	2.0	0.484	9.1	LOS A	2.7	68.2	0.56	0.47	30.4
6	T1	318	2.0	0.484	9.1	LOS A	2.7	68.2	0.56	0.47	30.2
16	R2	119	2.0	0.484	9.1	LOS A	2.7	68.2	0.56	0.47	29.3
Appr		500	2.0	0.484	9.1	LOS A	2.7	68.2	0.56	0.47	30.0
North: Indiana Ave											
7	L2	84	2.0	0.465	9.5	LOS A	2.5	63.6	0.60	0.58	30.1
4	T1	196	2.0	0.465	9.5	LOS A	2.5	63.6	0.60	0.58	29.9
14	R2	156	2.0	0.465	9.5	LOS A	2.5	63.6	0.60	0.58	29.1
Approach		435	2.0	0.465	9.5	LOS A	2.5	63.6	0.60	0.58	29.6
West: Ustick Rd											
5	L2	116	2.0	0.416	8.3	LOS A	2.1	52.5	0.54	0.47	30.4
2	T1	278	2.0	0.416	8.3	LOS A	2.1	52.5	0.54	0.47	30.2
12	R2	19	2.0	0.416	8.3	LOS A	2.1	52.5	0.54	0.47	29.4
Approach		413	2.0	0.416	8.3	LOS A	2.1	52.5	0.54	0.47	30.2
All Vehicles		1584	2.0	0.484	8.7	LOS A	2.7	68.2	0.56	0.50	30.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Tuesday, September 08, 2015 9:46:19 AM
Project: X:\projects\251501\TrafficISIDRAIUstick-Indiana\Ustick-Indiana.sip6

SAFETY EVALUATION

I. PROJECT DATA

	DISTRICT	ROUTE	SEG CODE	B.M.P.	E.M.P.	LENGTH	AADT	TYPE RDWY
EXIST. RDWY	3		4875	0.76	1.34	0.59	10.37	60
LOCATION	Ustick Road, Montana to Indiana				PROPOSED IMPROVEMENT			
					LIFE	COST (1000)		
					CONST	R/W	TOTAL	
IMPROVEMENT	Widen from 2 to 4 lanes with raised med]an							

II. ACCIDENT SUMMARY - SIGNIFICANCE

MO.	YR.	TOTAL	FATAL	INJURY	I + F	PDO	SV	MV	WET	DRY		
12	2010	5	0	2	2	3						
12	2011	11	0	4	4	7						
12	2012	7	0	2	2	5						
12	2013	12	0	5	5	7						
12	2014	16	0	6	6	10						

III. TRAFFIC DATA

1	2	3	4	5	6	7	8	9	10	11	12
AADT (1000)					TOTAL NO. OF			TOTAL TRAVEL			
			STREE	VCF			ACC/YR	MV/YR	MVM/YR	ACC/MV	ACC/MVM
PRES.	FUT.	AVE.	T	(3*1)	YEARS	ACC.	(7 $\div 6$)	. $365(1+4$)	(9 x MI.)	(8 $\div 9$)	(8 $\div 10)$
10.4				\#\#\#	5	51	10.20	3.78	2.22	-	4.59

IV. REDUCTION FACTOR

1	2	3	4	5	6
		$\begin{aligned} & \text { BASE RATE } \\ & \text { ACC/MV(M) } \\ & \hline \end{aligned}$	EXPECTED ACC/MV(M)	D.R.	CALC.
ACC/MVM	R.F.			MV(M)	R.F.
				1-(>3 OR 4)	($5 \div 1$)
4.59	0.4	1.19	2.76	1.84	0.40

V. SAFETY INDEX CALCULATION (METHOD I)

COMPUTED BY: Chhang Ream DATE: 09/29/15 PROJECT NO.: \qquad
CHECKED BY: \qquad DATE: 09/21/15 KEY NUMBER: \qquad

SAFETY EVALUATION -SUPPLEMENTAL-

VI. ACCIDENT COSTS (METHOD II)

1	2	3	4		5	6	7
BEFORE ACCIDENTS				EXPECTED ACCIDENTS			
TYPE	NO.	COST	TOTAL		NO.	COST	TOTAL
I+F							
PDO							
TOTAL							

VII. SAFETY INDEX CALCULATION (METHOD II)

1	2	3	4	5	6	7
BEFORE	EXPECTED				BEFORE	EXPECTED
\$/ACC	\$/ACC	ACC/YR	VCF	LIFE	COST	COST
SAFETY INDEX = (BOX $6-\mathrm{BOX} 7) \div$ TOTAL COST =					=	
ANNUAL SAFETY BENEFIT $=($ BOX $6-\mathrm{BOX} \mathrm{7}) \div(\mathrm{BOX} 5)=$					=	

COMMENTS:
Prohibit turning movement - 40\%

51 crashes * $40 \%=21$ crashes reduced by constructing raised median

SAFETY EVALUATION

I. PROJECT DATA

	DISTRICT	ROUTE	SEG CODE	B.M.P.	E.M.P.	LENGTH	AADT	TYPE RDWY	
EXIST. RDWY	3		4875	0.76	0.76	SPOT	10.37	63	
LOCATION	Ustick Road and Montana Avenue				PROPOSED IMPROVEMENT				
					LIFE	COST (1000)			
					CONST	R/W	TOTAL		
IMPROVEMENT	Reconstruct intersection - roundabout								

II. ACCIDENT SUMMARY - SIGNIFICANCE

MO.	YR.	TOTAL	FATAL	INJURY	I + F	PDO	SV	MV	WET	DRY		
12	2010	2	0	0	0	2						
12	2011	6	0	4	4	2						
12	2012	7	0	2	2	5						
12	2013	4	0	2	2	2						
12	2014	6	0	3	3	3						
TOTA	AL-----	25	0	11	11	14	0	0	0	0	0	0
AVE. SEVERITY \% FOR THIS ROAD TYPE \qquad EXPECTED I+F AND PDO ACCIDENTS- \qquad DIFFERENCE (DEVIATION FROM EXPECTED)--STATISTICALLY SIGNIFICANT?- \qquad					48.8	51.2	SPOT INTERSECTION (INCLUDE X STREET)SPOT NON-INTERSECTIONSEGMENT (ALL ACCIDENTS)					
					12.2	12.8						
					-1.2							
					NO							
CONFIDENCE LEVEL------------------------------1-1-1					-							

III. TRAFFIC DATA

1	2	3	4	5	6	7	8	9	10	11	12
AADT (1000)					TOTAL	O. OF		TOTAL	TRAVEL		
			$\begin{gathered} \text { STREE } \\ \mathrm{T} \end{gathered}$	$\begin{aligned} & \text { VCF } \\ & (3 \div 1) \end{aligned}$			ACC/YR	MV/YR	MVM/YR	ACC/MV	ACC/MVM
PRES.	FUT.	AVE.			YEARS	ACC.	(7 $\div 6$)	. $365(1+4$)	($9 \times \mathrm{MI}$.)	(8 $\div 9$)	(8 $\div 10)$
10.37			3.451	\#\#\#	5	25	5.00	5.04	-	0.99	-

IV. REDUCTION FACTOR

1	2	3	4	5	6
		BASE RATEACC/MV(M)	$\begin{aligned} & \text { EXPECTED } \\ & \text { ACC/MV(M) } \end{aligned}$	D.R.	CALC.
ACC/MVM	R.F.			MV(M)	R.F.
				1-(>3 OR 4)	(5 +1)
0.99	0.4	0.67	0.59	0.32	0.32

V. SAFETY INDEX CALCULATION (METHOD I)

COMPUTED BY: Chhang Ream DATE: 09/29/15 PROJECT NO.:
CHECKED BY: \qquad DATE: 09/29/15 KEY NUMBER:
\qquad

SAFETY EVALUATION -SUPPLEMENTAL-

VI. ACCIDENT COSTS (METHOD II)

1	2	3	4		5	6	7
BEFORE ACCIDENTS				EXPECTED ACCIDENTS			
TYPE	NO.	COST	TOTAL		NO.	COST	TOTAL
I+F							
PDO							
TOTAL							

VII. SAFETY INDEX CALCULATION (METHOD II)

1	2	3	4	5	6	7
BEFORE	EXPECTED				BEFORE	EXPECTED
\$/ACC	\$/ACC	ACC/YR	VCF	LIFE	COST	COST
SAFETY INDEX = (BOX $6-\mathrm{BOX} 7) \div$ TOTAL COST =					=	
ANNUAL SAFETY BENEFIT = $($ BOX $6-\mathrm{BOX} 7) \div($ BOX 5$)=$					=	

COMMENTS:
Reconstruct intersection - 40\%

```
25 crashes * 40% = 10 crashes reduced by reconstructing the intersection
```


SAFETY EVALUATION

I. PROJECT DATA

	DISTRICT	ROUTE	SEG CODE	B.M.P.	E.M.P.	LENGTH	AADT	TYPE RDWY	
EXIST. RDWY	3		4875	1.26	1.26	SPOT	9.47	60	
LOCATION	Ustick Road and Indiana Avenue				PROPOSED IMPROVEMENT				
					LIFE	COST (1000)			
					CONST	R/W	TOTAL		
IMPROVEMENT									

II. ACCIDENT SUMMARY - SIGNIFICANCE

MO.	YR.	TOTAL	FATAL	INJURY	I + F	PDO	SV	MV	WET	DRY		
12	2010	1	0	1	1	0						
12	2011	3	0	0	0	3						
12	2012	0	0	0	0	0						
12	2013	6	0	1	1	5						
12	2014	5	0	0	0	5						

III. TRAFFIC DATA

1	2	3	4	5	6	7	8	9	10	11	12
AADT (1000)					TOTAL	O. OF		TOTAL	TRAVEL		
			$\begin{gathered} \text { STREE } \\ \mathrm{T} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { VCF } \\ (3 \div 1) \\ \hline \end{array}$			ACC/YR	MV/YR	MVM/YR	ACC/MV	ACC/MVM
PRES.	FUT.	AVE.			YEARS	ACC.	$(7 \div 6)$. $365(1+4)$	(9 x MI.)	$(8 \div 9)$	$(8 \div 10)$
9.47			6.7	\#\#\#	5	15	3.00	5.90	-	0.51	-

IV. REDUCTION FACTOR

1	2	3	4	5	6
		$\begin{aligned} & \text { BASE RATE } \\ & \text { ACC/MV(M) } \\ & \hline \end{aligned}$	EXPECTED ACC/MV(M)	D.R.	CALC.
ACC/MVM	R.F.			MV(M)	R.F.
				1-(>3 OR 4)	($5 \div 1$)
0.51	*	0.70	*	*	*

V. SAFETY INDEX CALCULATION (METHOD I)

COMPUTED BY: Chhang Ream DATE: 09/21/15 PROJECT NO.:
CHECKED BY: \qquad DATE: 09/21/15 KEY NUMBER:
\qquad
Lionel Starchman \qquad

SAFETY EVALUATION -SUPPLEMENTAL-

VI. ACCIDENT COSTS (METHOD II)

1	2	3	4		5	6	7
BEFORE ACCIDENTS				EXPECTED ACCIDENTS			
TYPE	NO.	COST	TOTAL		NO.	COST	TOTAL
I+F							
PDO							
TOTAL							

VII. SAFETY INDEX CALCULATION (METHOD II)

1	2	3	4	5	6	7
BEFORE	EXPECTED				BEFORE	EXPECTED
\$/ACC	\$/ACC	ACC/YR	VCF	LIFE	COST	COST
SAFETY INDEX = (BOX $6-\mathrm{BOX} 7) \div$ TOTAL COST =					=	
ANNUAL SAFETY BENEFIT $=($ BOX $6-\mathrm{BOX} \mathrm{7}) \div(\mathrm{BOX} 5)=$					=	

COMMENTS:

Total Accidents: 25 Total Fatalities: 0
Total Units: 50 Total Injuries: 19
rotal reopie: /ठ
Report Criteria: Ustick Rd-Caldwell And Montana Ave Streets :
Ustick Rd-Caldwell Counties:ALL, Cities:ALL - In City And Rural,
Montana Ave
Use intersection related crashes
Data From: 2014,2013,2012,2011,2010,

Year	Total
2010	2
2011	6
2012	7
2013	4
2014	6

Severity	Total
B Injury Accident	3
C Injury Accident	8
Property Dmg Report	14

Day Of Week	Total
Friday	5
Monday	4
Saturday	2
Sunday	2
Thursday	3
Tuesday	7
Wednesday	2

Hour	Total
7	2
8	5
9	1
13	1
14	3
15	5
16	1
17	3
19	1
21	2
22	1

Event Name	Total
Angle	36
Angle Turning	8
Head-On	2
Rear-End	2
Rear-End Turning	2

Contributing Circumstance	Total
Alcohol Impaired	1
Failed to Obey Stop Sign	6
Failed to Yield	13
Improper Lane Change	1
Inattention	5
None	120
Speed Too Fast For Condit	1
Vision Obstruction	3

Injury	Total
None Evident	58
Non-Incapacitating	3
Possible	16
Unknown	1

Drivers Age	Total
15	1
16	3
17	6
19	4
22	1
23	2
26	1
27	1
28	2
29	2
31	2
32	2
33	2
34	2
35	1

36	1
39	1
40	1
44	3
50	1
53	1
55	2
58	1
61	2
66	1
75	1
999	3

Total Accidents: 15 Total Fatalities: 0
Total Units: 29 Total Injuries: 4
rotal reopie: 46
Report Criteria: Ustick Rd-Caldwell And Indiana Ave

Streets :

Ustick Rd-Caldwell Counties:ALL, Cities:ALL - In City And Rural, Indiana Ave
Use intersection related crashes
Data From: 2014,2013,2012,2011,2010,

Year	Total
	2010
2011	3
2013	6
2014	5

Severity	Total
B Injury Accident	1
C Injury Accident	1
Property Dmg Report	13

Day Of Week	Total
Friday	3
Monday	3
Saturday	2
Thursday	1
Tuesday	4
Wednesday	2

Hour	Total
	6
	1
	8
	1
	9
13	1
15	2
16	2
17	1
18	1
19	2
21	1

Event Name	Total
Angle	16
Angle Turning	4
Ditch	1
Overturn	1
Rear-End	7

Contributing Circumstance	Total
Failed to Obey Stop Sign	1
Failed to Yield	8
Following Too Close	2
Foot Slipped Off or Caugh	1
Improper Turn	1
Inattention	4
None	69
Speed Too Fast For Condit	1

Injury	Total
None Evident	42
Non-Incapacitating	1
Possible	3

Drivers Age	Total
16	1
18	1
23	1
26	1
27	1
29	1
30	1
31	1
33	2
34	1
36	1
37	1
39	1
46	1
50	1
52	2
56	1
57	1

64	1
65	1
72	1
74	2
75	1
76	1
79	1
81	1

Total Accidents: 11 Total Fatalities: 0
Total Units: 23 Total Injuries: 6
Total People: 43
Report Criteria: Ustick Rd-Caldwell And Indiana Ave
Segment Code: 004875 Milepost Range: 0.757 to 1.344 Counties:ALL, Cities:ALL - In City And Rural,
Data From: 2014,2013,2012,2011,2010,

Year	Total
	2010
2011	2
2012	0
2013	2
	2014

Severity	Total
B Injury Accident	1
C Injury Accident	4
Property Dmg Report	6

Day Of Week	Total
Friday	3
Monday	1
Saturday	1
Sunday	0
Thursday	2
Tuesday	2
Wednesday	2

Hour	Total	
	7	1
8	1	
11	1	
12	1	
13	2	
14	1	
15	1	
16	1	
17	1	
18	1	

Angle Turning	2
Fence	1
Head-On	2
Mailbox	1
Rear-End	17

Contributing Circumstance	Total
Brakes	1
Failed to Obey Stop Sign	
Failed to Yield	1
Following Too Close	6
Inattention	2
None	57
Speed Too Fast For Condit	2

Injury	Total
None Evident	37
Non-Incapacitating	1
Possible	5

Drivers Age	Total
16	1
17	4
18	3
19	1
23	3
26	1
29	1
32	1
36	1
39	1
52	1
60	1
61	1
71	1
85	1
86	1

CMF / CRF Details

CMF ID: 4930

Conversion of two-way stop-controlled intersection into single- or multi-lane roundabout

Description: Conversion of two-way stop-controlled intersection into single- or multi-lane roundabout.

Prior Condition: The intersection was operating under TWSC control.
Category: Intersection geometry
Study: Evaluation of Roundabout Safety, Qin et al., 2013

Star Quality Rating:
[View score details]

Crash Modification Factor (CMF)	
Value:	0.751
Adjusted Standard	
Error:	
Unadjusted Standard	
Error:	0.105

CMIE

CRASH MODIFICATION FACTORS CLEARINGHOUSE

CMF／CRF Details

CMF ID： 325

Install a traffic signal
Description：
Prior Condition：Stop controlled
Category：Intersection traffic control
Study：$\underline{\text { Accident Modification Factors for Traffic Engineering and ITS }}$ Improvements，Harkey et al．， 2008

Star Quality Rating：
食俭餄

Crash Modification Factor（CMF）

Value： 0.56

Adjusted Standard
Error：
0.03

Unadjusted Standard
Error：

Value:	44 (This value indicates a decrease in crashes)
Adjusted Standard	
Error:	3
Unadjusted Standard	

Applicability

Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	
Road Division Type:	
Speed Limit:	
Area Type:	Rural
Traffic Volume:	
Time of Day:	
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	3261 to 29926 Annual Average Daily Traffic (AADT)

Minor Road Traffic Volume:

101 to 10300 Annual Average Daily Traffic (AADT)

Development Details

Date Range of Data
 Used:

Municipality:

State:

Country:

Type of Methodology
Used:
Sample Size Used:
Before/after using empirical Bayes or full Bayes

Other Details

Included in Highway Safety Manual?

Date Added to Clearinghouse:

Comments:

Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.

08-15-2012

Countermeasure name has been slightly modified for consistency across Clearinghouse

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the
interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

Value:	24.89 (This value indicates a decrease in crashes)
Adjusted Standard	
Error:	

Applicability

Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2,4
Road Division Type:	All
Speed Limit:	
Area Type:	All
Traffic Volume:	
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	4100 (total entering) to 48100 (total entering) Annual Average Daily Traffic (AADT)

Minor Road Traffic Volume:

Development Details

Date Range of Data
 Used:

Municipality:

State:
Country:
Type of Methodology Used:

Sample Size Used:
Before Sample Size Used:

After Sample Size Used:

1994 to 2010

Statewide
WI

USA

Before/after using empirical Bayes or full Bayes

Crashes

122 Crashes

93 Crashes

Other Details

Included in Highway

 Safety Manual?
Date Added to

Clearinghouse:

Comments:

No

08-01-2013

- Study included three-year before and after crash data for each site. - Reported traffic volume is total entering volume.

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 5525

Install a traffic signal
Description:
Prior Condition: Stop controlled intersection
Category: Intersection traffic control
Study: Comparison of Safety Evaluation Approaches for Intersection Signalization in Florida, Wang and Abdel-Aty, 2014

Star Quality Rating:

| Crash Modification Factor (CMF) | |
| ---: | :--- | :--- |
| Value: | 0.656 |
| Adjusted Standard | |
| Error: | |
| Unadjusted Standard | 0.105 |

Value:	34.4 (This value indicates a decrease in crashes)
Adjusted Standard Error:	
Unadjusted Standard Error:	10.5
Applicability	
Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2 to 4
Road Division Type:	
Speed Limit:	
Area Type:	Not specified
Traffic Volume:	
Time of Day:	Not specified
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	0 to 10000 Annual Average Daily Traffic (AADT)

Minor Road Traffic Volume:	
	Development Details
Date Range of Data Used:	2004 to 2009
Municipality:	
State:	FL
Country:	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	
Before Sample Size Used:	153
Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	07-16-2014
Comments:	CMF applies to intersections with major road AADT

disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 5529

Install a traffic signal
Description:
Prior Condition: Stop controlled intersection
Category: Intersection traffic control
Study: Comparison of Safety Evaluation Approaches for Intersection Signalization in Florida, Wang and Abdel-Aty, 2014

Star Quality Rating:

Crash Modification Factor (CMF)	
Value:	1.119
Adjusted Standard	
Error:	
Unadjusted Standard	0.148

Value:	-11.9 (This value indicates an increase in crashes)
Adjusted Standard	
Error:	
Unadjusted Standard	14.8

Applicability

Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2 to 4
Road Division Type:	
Speed Limit:	
Area Type:	Not specified
Traffic Volume:	
Time of Day:	Not specified
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	20000 to 25000 Annual Average Daily Traffic (AADT)

Minor Road Traffic Volume:	
	Development Details
Date Range of Data Used:	2004 to 2009
Municipality:	
State:	FL
Country:	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	
Before Sample Size Used:	235
Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	07-16-2014
Comments:	CMF applies to intersections with major road AADT 20,000-25,000

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 5531

Install a traffic signal
Description:
Prior Condition: Stop controlled intersection
Category: Intersection traffic control
Study: Comparison of Safety Evaluation Approaches for Intersection Signalization in Florida, Wang and Abdel-Aty, 2014

Star Quality Rating:

| Crash Modification Factor (CMF) | |
| ---: | :--- | :--- |
| Value: | 0.76 |
| Adjusted Standard | |
| Error: | |
| Unadjusted Standard | 0.085 |

Value:	24 (This value indicates a decrease in crashes)
Adjusted Standard	
Error:	

Applicability

Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2 to 4
Road Division Type:	
Speed Limit:	
Area Type:	Not specified
Traffic Volume:	
Time of Day:	Not specified
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	25000 to 35000 Annual Average Daily Traffic (AADT)

Minor Road Traffic Volume:	
	Development Details
Date Range of Data Used:	2004 to 2009
Municipality:	
State:	FL
Country:	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	
Before Sample Size Used:	324
Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	07-16-2014
Comments:	CMF applies to intersections with major road AADT 25,000-35,000

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 5534

Install a traffic signal
Description:
Prior Condition: Stop controlled intersection
Category: Intersection traffic control
Study: Comparison of Safety Evaluation Approaches for Intersection Signalization in Florida, Wang and Abdel-Aty, 2014

Star Quality Rating:

| Crash Modification Factor (CMF) | |
| ---: | :--- | :--- |
| Value: | 0.684 |
| Adjusted Standard | |
| Error: | |
| Unadjusted Standard | 0.093 |

Value:	31.6 (This value indicates a decrease in crashes)
Adjusted Standard	
Error:	
Unadjusted Standard	
Error:	9.3

Applicability

Crash Type:	All
Crash Severity:	Fatal,Serious injury,Minor injury
Roadway Types:	Not specified
Number of Lanes:	2 to 4
Road Division Type:	
Speed Limit:	
Area Type:	Not specified
Traffic Volume:	
Time of Day:	Not specified
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	35000 to Annual Average Daily Traffic (AADT)

Minor Road Traffic Volume:	
	Development Details
Date Range of Data Used:	2004 to 2009
Municipality:	
State:	FL
Country:	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	
Before Sample Size Used:	214
Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	07-16-2014
Comments:	CMF applies to intersections with major road AADT $>35,000$

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 6398

Install a traffic signal
Description:
Prior Condition: No Prior Condition(s)
Category: Intersection traffic control
Study: Safety effects of an extensive black spot treatment programme in Flanders-Belgium, De Pauw et al., 2014

Star Quality Rating:

[View score details]

Crash Modification Factor (CMF)

Value: 0.65

Adjusted Standard
Error:

Unadjusted Standard
Error:

$$
0.14
$$

Value:	35 (This value indicates a decrease in crashes)
Adjusted Standard Error:	
Unadjusted Standard Error:	14
Applicability	
Crash Type:	All
Crash Severity:	Serious injury,Minor injury
Roadway Types:	Not specified
Number of Lanes:	
Road Division Type:	
Speed Limit:	
Area Type:	All
Traffic Volume:	
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	Not specified
Traffic Control:	Uncontrolled
Major Road Traffic Volume:	

Minor Road Traffic Volume:	
	Development Details
Date Range of Data Used:	2000 to 2008
Municipality:	
State:	
Country:	Belgium
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	
Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	12-11-2014
Comments:	Comparison group 1 (black spots treated after 2008)

in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

Warrants Summary Report

1: Ustick Rd and Montana Ave - 2015 Existing
Intersection Informatior

	Major Street	Minor Street
Street Name	Ustick Rd	Montana Ave
Direction	EB/WB	NB/SB
Number of Lane: 2	1	
Approch Speed	35	35

Warrant	Met?	Notes
Warrant 1, Eight-Hour Vehicular Volume		
	No	
Condition A or B Met	No	4 Hours met (8 required)
Condition A and B M	No	6 Hours met (8 required)
Warrant 2, Four-Hour Vehicular Volume		
	No	2 Hours met (4 required)
Warrant 7, Crash Experience		
	No	
Traffic Volume Condi	No	6 Hours met (8 required)
Ped Condition?	No	0 Hours met (8 required)

Warrants Summary Report

2: Ustick Rd and Montana Ave - 2020

Intersection Informatior

	Major Street	Minor Street
Street Name	Ustick Rd	Montana Ave
Direction	EB/WB	NB/SB
Number of Lanes	2	2
Approch Speed	35	35

Warrant	Met?	Notes
Warrant 1, Eight-Hour Vehicular Volume		
	No	
Condition A or B Met	No	2 Hours met (8 required)
Condition A and $B M_{1}$	No	4 Hours met (8 required)
Warrant 2, Four-Hour Vehicular Volume		
	No	0 Hours met (4 required)
Warrant 7, Crash Experience		
	No	
Traffic Volume Condi	No	7 Hours met (8 required)
Ped Condition?	No	0 Hours met (8 required)

Warrants Summary Report

3: Ustick Rd and Montana Ave - 2040

Intersection Informatior

	Major Street	Minor Street
Street Name	Ustick Rd	Montana Ave
Direction	EB/WB	NB/SB
Number of Lane: 2	2	
Approch Speed	35	35

Warrant	Met?	Notes
Warrant 1, Eight-Hour Vehicular Volume		
	No	
Condition A or B Met	No	7 Hours met (8 required)
Condition A and $\mathrm{B} \mathrm{M}_{1}$	No	7 Hours met (8 required)
Warrant 2, Four-Hour Vehicular Volume		
	Yes	5 Hours met (4 required)
Warrant 7, Crash Experience		
	No	
Traffic Volume Condi	Yes	11 Hours met (8 required)
Ped Condition?	No	0 Hours met (8 required)

D:\UAG\2011Modellcalibration\BaselTIP\FY1620R1\b2015IROUNDED_b2015.NET

New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Clubio

D:IUAG12011Modellcalibration\BaseITIPIFY1620R11b2020\ROUNDED_b2020.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015

D:IUAG\2011Modellcalibration\Base\TIP\FY1620R1\b2040\ROUNDED_b2040.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Clubib

D:IUAGl2011Modellcalibration\Base\TIP\StudieslUstickCaldwelllb2040\ROUNDED_b2040.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Clubio

2011 Preliminary Calibration

9/2/2015

D:IUAG12011Modellcalibration\BaselOct22\RUN7\aug252015|b2011\PH_ASSIGN_b2011.NET
BCIDP

D:IUAG|2011Modellcalibration\BaselTIP\FY1620R1\b2015IPH_ASSIGN_b2015.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Cllb

D:IUAG12011Modellcalibration\Base\TIP\FY1620R1 1b2020IPH_ASSIGN_b2020.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Club

D:\UAG\2011Modellcalibration\Base\TIP\FY1620R1\b2040\PH_ASSIGN_b2040.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Clubio
Special: 5
9/3/2015

D:\UAG\2011Modellcalibration\Base\TIP\Studies\UstickCaldwelllb2040\PH_ASSIGN_b2040.NET
New Regional Model calibrated to 2011/12 conditions - completed in January 2015
Clubio

Major/Minor	Major1		Major2				Minor1				Minor2			
Conflicting Flow All	356	0	0		422	0		0	1208	1155	422	1250	1155	356
Stage 1	-	-	-		-	-		-	522	522		633	633	
Stage 2	-	-	-		-	-		-	686	633		617	522	
Critical Hdwy	4.12	-	-		4.12	-		-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-			-		-	6.12	5.52		6.12	5.52	
Critical Hdwy Stg 2	-	-	-		-	-		-	6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218	-	-		2.218	-		-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1203	-	-		1137	-		-	160	197	632	150	197	688
Stage 1	-	-	-		-	-		-	538	531	-	468	473	
Stage 2	-	-	-		-	-		-	438	473	-	477	531	
Platoon blocked, \%		-	-			-		-						
Mov Cap-1 Maneuver	1203	-	-		1137	-		-	100	166	632	79	166	688
Mov Cap-2 Maneuver	-	-	-		-	-		-	100	166		79	166	
Stage 1	-	-			-			-	516	509		449	415	
Stage 2	-	-	-		-	-		-	311	415		322	509	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0.8				2.2				55.7			78.8		
HCM LOS									F			F		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	R SBLn1						
Capacity (veh/h)	271	1203	-	-	1137			- 173						
HCM Lane V/C Ratio	0.8	0.042	-		0.122	-		- 0.803						
HCM Control Delay (s)	55.7	8.1	-	-	8.6	-		78.8						
HCM Lane LOS	F	A	-	-	A	-		F						
HCM 95th \%tile Q(veh)	6.2	0.1	-	-	0.4	-	-	- 5.4						

Six Mile Engineering, PA
September 2015

Ustick Road, Montana to Indiana, Pre-Concept COMPASS Project No. 2015-16

Intersection												
Int Delay, s/veh 11.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	40	325	40	110	370	40	20	60	80	35	60	50
Future Vol, veh/h	40	325	40	110	370	40	20	60	80	35	60	50
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	100	-	0	100	-	225	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	41	335	41	113	381	41	21	62	82	36	62	52

Six Mile Engineering, PA
September 2015

Ustick Road, Montana to Indiana, Pre-Concept COMPASS Project No. 2015-16

LEVEL OF SERVICE

Site: 2020 Base AM - Multi-lane
Montana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2020 Base AM Multi-lane
Montana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Montana Ave											
3	L2	28	2.0	0.238	6.4	LOS A	1.2	29.4	0.61	0.55	31.5
8	T1	50	2.0	0.238	6.4	LOS A	1.2	29.4	0.61	0.55	31.2
18	R2	139	2.0	0.238	6.4	LOS A	1.2	29.4	0.61	0.55	30.4
Appr		217	2.0	0.238	6.4	LOS A	1.2	29.4	0.61	0.55	30.7
East: Ustick Rd											
1	L2	139	2.0	0.230	5.0	LOS A	1.0	26.0	0.28	0.16	31.2
6	T1	356	2.0	0.230	5.0	LOS A	1.0	26.0	0.28	0.16	31.7
16	R2	61	2.0	0.230	5.0	LOS A	1.0	26.0	0.28	0.16	31.1
Appr		556	2.0	0.230	5.0	LOS A	1.0	26.0	0.28	0.16	31.5
North: Montana Ave											
7	L2	33	2.0	0.155	5.5	LOS A	0.7	18.1	0.58	0.51	31.6
4	T1	50	2.0	0.155	5.5	LOS A	0.7	18.1	0.58	0.51	31.3
14	R2	56	2.0	0.155	5.5	LOS A	0.7	18.1	0.58	0.51	30.5
Appr		139	2.0	0.155	5.5	LOS A	0.7	18.1	0.58	0.51	31.1
West: Ustick Rd											
5	L2	50	2.0	0.243	5.5	LOS A	1.1	27.0	0.38	0.26	31.8
2	T1	422	2.0	0.243	5.5	LOS A	1.1	27.0	0.38	0.26	31.7
12	R2	67	2.0	0.243	5.5	LOS A	1.1	27.0	0.38	0.26	30.9
Approach		539	2.0	0.243	5.5	LOS A	1.1	27.0	0.38	0.26	31.6
All V		1450	2.0	0.243	5.4	LOS A	1.2	29.4	0.39	0.29	31.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Friday, September 25, 2015 4:44:23 PM
Project: X:\projects\251501\TrafficISIDRAIUstick-MontanalUstick-Montana.sip6

LEVEL OF SERVICE

Site: 2020 Base PM - Multi-lane
Montana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2020 Base PM - Multi-lane
Montana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Montana Ave											
3	L2	21	2.0	0.164	5.1	LOS A	0.8	19.9	0.54	0.43	32.1
8	T1	62	2.0	0.164	5.1	LOS A	0.8	19.9	0.54	0.43	31.8
18	R2	82	2.0	0.164	5.1	LOS A	0.8	19.9	0.54	0.43	30.9
Appr		165	2.0	0.164	5.1	LOS A	0.8	19.9	0.54	0.43	31.4
East: Ustick Rd											
1	L2	113	2.0	0.221	4.9	LOS A	1.0	24.8	0.27	0.15	31.5
6	T1	381	2.0	0.221	4.9	LOS A	1.0	24.8	0.27	0.15	31.8
16	R2	41	2.0	0.221	4.9	LOS A	1.0	24.8	0.27	0.15	31.2
Appr		536	2.0	0.221	4.9	LOS A	1.0	24.8	0.27	0.15	31.7
North: Montana Ave											
7	L2	36	2.0	0.166	5.6	LOS A	0.8	19.5	0.58	0.51	31.6
4	T1	62	2.0	0.166	5.6	LOS A	0.8	19.5	0.58	0.51	31.3
14	R2	52	2.0	0.166	5.6	LOS A	0.8	19.5	0.58	0.51	30.5
Appr		149	2.0	0.166	5.6	LOS A	0.8	19.5	0.58	0.51	31.1
West: Ustick Rd											
5	L2	41	2.0	0.186	4.9	LOS A	0.8	19.7	0.35	0.23	32.0
2	T1	335	2.0	0.186	4.9	LOS A	0.8	19.7	0.35	0.23	32.0
12	R2	41	2.0	0.186	4.9	LOS A	0.8	19.7	0.35	0.23	31.2
Approach		418	2.0	0.186	4.9	LOS A	0.8	19.7	0.35	0.23	31.9
All Vehicles		1268	2.0	0.221	5.0	LOS A	1.0	24.8	0.37	0.26	31.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Friday, September 25, 2015 4:46:04 PM
Project: X:\projects\251501\TrafficISIDRAIUstick-MontanalUstick-Montana.sip6

	4	\rightarrow	）	7			4	4	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 \uparrow	「	\％	个 \uparrow	F	\％	\uparrow	「	\％	\uparrow	F
Traffic Volume（veh／h）	45	380	60	125	320	55	25	45	125	30	45	50
Future Volume（veh／h）	45	380	60	125	320	55	25	45	125	30	45	50
Number	7	，	14	3	8	18	5	2	12	1	6	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／n	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765
Adj Flow Rate，veh／h	50	422	67	139	356	61	28	50	139	33	50	56
Adj No．of Lanes	1	2	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	537	1556	696	512	1621	725	485	618	525	454	618	525
Arrive On Green	0.04	0.46	0.46	0.06	0.48	0.48	0.35	0.35	0.35	0.35	0.35	0.35
Sat Flow，veh／h	1681	3353	1500	1681	3353	1500	1283	1765	1500	1189	1765	1500
Grp Volume（v），veh／h	50	422	67	139	356	61	28	50	139	33	50	56
Grp Sat Flow（s），veh／h／ln	1681	1676	1500	1681	1676	1500	1283	1765	1500	1189	1765	1500
Q Serve（g＿s），s	1.8	9.3	3.0	5.1	7.4	2.6	1.8	2.3	8.0	2.3	2.3	3.0
Cycle Q Clear（g＿c），s	1.8	9.3	3.0	5.1	7.4	2.6	4.1	2.3	8.0	4.6	2.3	3.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	537	1556	696	512	1621	725	485	618	525	454	618	525
VIC Ratio（ X ）	0.09	0.27	0.10	0.27	0.22	0.08	0.06	0.08	0.26	0.07	0.08	0.11
Avail Cap（c＿a），veh／h	649	1556	696	676	1621	725	485	618	525	454	618	525
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	15.2	19.7	18.0	15.2	17.9	16.7	27.4	26.1	27.9	27.6	26.1	26.3
Incr Delay（d2），s／veh	0.1	0.4	0.3	0.3	0.3	0.2	0.2	0.3	1.2	0.3	0.3	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	1.5	7.8	2.3	4.3	6.3	2.0	1.2	2.1	6.2	1.4	2.1	2.3
LnGrp Delay（d），s／veh	15.3	20.1	18.3	15.5	18.2	16.9	27.7	26.3	29.2	27.9	26.3	26.7
LnGrp LOS	B	C	B	B	B	B	C	C	C	C	C	C
Approach Vol，veh／h		539			556			217			139	
Approach Delay，s／veh		19.5			17.4			28.3			26.9	
Approach LOS		B			B			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s		47.0	12.3	60.7		47.0	10.0	63.0				
Change Period（ $Y+R \mathrm{C}$ ）， s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting（Gmax），s		42.0	19.0	44.0		42.0	13.0	50.0				
Max Q Clear Time（ $\left.g_{\sim} \mathrm{c}+11\right)$ ，s		10.0	7.1	11.3		6.6	3.8	9.4				
Green Ext Time（p＿c），s		1.4	0.3	6.1		1.4	0.0	6.3				
Intersection Summary												
HCM 2010 Ctrl Delay			20.7									
HCM 2010 LOS			C									

	3		\checkmark	7		4	4	\dagger	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中4	「	${ }^{*}$	44	「	${ }^{*}$	4	「	${ }^{*}$	4	「
Traffic Volume（veh／h）	40	325	40	110	370	40	20	60	80	35	60	50
Future Volume（veh／h）	40	325	40	110	370	40	20	60	80	35	60	50
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765
Adj Flow Rate，veh／h	41	335	41	113	381	41	21	62	82	36	62	52
Adj No．of Lanes	1	2	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	506	1528	684	545	1600	716	432	559	475	422	559	475
Arrive On Green	0.03	0.46	0.46	0.05	0.48	0.48	0.32	0.32	0.32	0.32	0.32	0.32
Sat Flow，veh／h	1681	3353	1500	1681	3353	1500	1273	1765	1500	1239	1765	1500
Grp Volume（v），veh／h	41	335	41	113	381	41	21	62	82	36	62	52
Grp Sat Flow（s），veh／h／ln	1681	1676	1500	1681	1676	1500	1273	1765	1500	1239	1765	1500
Q Serve（g＿s），s	1.5	7.2	1.8	4.3	8.0	1.8	1.4	3.0	4.7	2.5	3.0	2.9
Cycle Q Clear（g＿c），s	1.5	7.2	1.8	4.3	8.0	1.8	4.4	3.0	4.7	5.5	3.0	2.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	506	1528	684	545	1600	716	432	559	475	422	559	475
V／C Ratio（X）	0.08	0.22	0.06	0.21	0.24	0.06	0.05	0.11	0.17	0.09	0.11	0.11
Avail Cap（c＿a），veh／h	608	1528	684	723	1600	716	432	559	475	422	559	475
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	16.3	19.7	18.3	15.8	18.5	16.9	30.6	29.0	29.6	31.0	29.0	29.0
Incr Delay（d2），s／veh	0.1	0.3	0.2	0.2	0.4	0.2	0.2	0.4	0.8	0.4	0.4	0.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.7	3.4	0.8	2.0	3.8	0.8	0.5	1.5	2.1	0.9	1.5	1.3
LnGrp Delay（d），s／veh	16.4	20.1	18.4	16.0	18.8	17.0	30.8	29.4	30.4	31.4	29.4	29.5
LnGrp LOS	B	C	B	B	B	B	C	C	C	C	C	C
Approach Vol，veh／h		417			535			165			150	
Approach Delay，s／veh		19.5			18.1			30.1			29.9	
Approach LOS		B			B			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s		45.0	13.3	61.7		45.0	10.7	64.3				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		7.0	7.0	7.0		7.0	7.0	7.0				
Max Green Setting（Gmax），s		38.0	19.0	42.0		38.0	11.0	50.0				
Max Q Clear Time（g＿c＋11），s		6.7	6.3	9.2		7.5	3.5	10.0				
Green Ext Time（p＿c），s		1.3	0.2	5.4		1.3	0.0	5.5				
Intersection Summary												
HCM 2010 Ctrl Delay			21.5									
HCM 2010 LOS			C									

Intersection												
Int Delay, s/veh 394.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	60	590	70	140	480	105	30	55	160	65	55	70
Future Vol, veh/h	60	590	70	140	480	105	30	55	160	65	55	70
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	100	-	0	100		225	-		-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	67	656	78	156	533	117	33	61	178	72	61	78

Six Mile Engineering, PA
September 2015

Ustick Road, Montana to Indiana, Pre-Concept
COMPASS Project No. 2015-16

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 1.1$												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	80	485	50	170	760	100	30	85	90	70	120	115
Future Vol, veh/h	80	485	50	170	760	100	30	85	90	70	120	115
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-		None
Storage Length	100	-	0	100	-	225	-	-	-	-	-	
Veh in Median Storage, \#	-	0	.	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-		0	-		0	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	82	500	52	175	784	103	31	88	93	72	124	119

Major/Minor	Major1		Major2			Minor1			Minor2			
Conflicting Flow All	784	0	0	500	0	0	1920	1799	500	1889	1799	784
Stage 1	-	-	-	-	-	-	665	665		1134	1134	
Stage 2	-	-	-	-	-	-	1255	1134		755	665	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	834	-	-	1064	-	-	51	-80	571	-53	-80	393
Stage 1	-	-	-	-	-	-	449	458	-	246	278	
Stage 2	-	-	-	-	-	-	210	278		401	458	
Platoon blocked, \%		-	-		-	-						
Mov Cap-1 Maneuver	834	-	-	1064	-	-		~60	571		-60	393
Mov Cap-2 Maneuver	-	-	-	-	-	-		~60	-		~60	
Stage 1	-	-	-	-	-	-	405	413	-	222	232	
Stage 2	-	-	-	-	-	-	57	232	-	239	413	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.3			1.5								

HCM LOS

Six Mile Engineering, PA
September 2015

Ustick Road, Montana to Indiana, Pre-Concept
COMPASS Project No. 2015-16

LEVEL OF SERVICE

Site: 2040 Special AM - Multi-lane
Montana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	B	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2040 Special AM - Multi-lane
Montana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Montana Ave											
3	L2	33	2.0	0.402	10.9	LOS B	2.1	53.6	0.75	0.80	29.6
8	T1	61	2.0	0.402	10.9	LOS B	2.1	53.6	0.75	0.80	29.4
18	R2	178	2.0	0.402	10.9	LOS B	2.1	53.6	0.75	0.80	28.6
Appr		272	2.0	0.402	10.9	LOS B	2.1	53.6	0.75	0.80	28.9
East: Ustick Rd											
1	L2	156	2.0	0.343	6.4	LOS A	1.7	43.7	0.36	0.23	30.9
6	T1	533	2.0	0.343	6.4	LOS A	1.7	43.7	0.36	0.23	31.1
16	R2	117	2.0	0.343	6.4	LOS A	1.7	43.7	0.36	0.23	30.6
Appr		806	2.0	0.343	6.4	LOS A	1.7	43.7	0.36	0.23	31.0
North: Montana Ave											
7	L2	72	2.0	0.290	8.4	LOS A	1.3	34.2	0.70	0.70	30.2
4	T1	61	2.0	0.290	8.4	LOS A	1.3	34.2	0.70	0.70	29.9
14	R2	78	2.0	0.290	8.4	LOS A	1.3	34.2	0.70	0.70	29.2
Approach		211	2.0	0.290	8.4	LOS A	1.3	34.2	0.70	0.70	29.7
West: Ustick Rd											
5	L2	67	2.0	0.383	7.5	LOS A	1.9	48.0	0.49	0.40	31.0
2	T1	656	2.0	0.383	7.5	LOS A	1.9	48.0	0.49	0.40	30.9
12	R2	78	2.0	0.383	7.5	LOS A	1.9	48.0	0.49	0.40	30.1
Appr		800	2.0	0.383	7.5	LOS A	1.9	48.0	0.49	0.40	30.8
All V		2089	2.0	0.402	7.6	LOS A	2.1	53.6	0.49	0.41	30.5

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Friday, September 25, 2015 4:46:30 PM
Project: X:\projects\251501\TrafficISIDRAIUstick-MontanalUstick-Montana.sip6

LEVEL OF SERVICE

Site: 2040 Special PM - Multi-lane
Montana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	C	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2040 Special PM - Multi-lane
Montana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Montana Ave											
3	L2	31	2.0	0.270	7.7	LOS A	1.3	32.4	0.67	0.67	30.9
8	T1	88	2.0	0.270	7.7	LOS A	1.3	32.4	0.67	0.67	30.7
18	R2	93	2.0	0.270	7.7	LOS A	1.3	32.4	0.67	0.67	29.8
Appr		211	2.0	0.270	7.7	LOS A	1.3	32.4	0.67	0.67	30.3
East: Ustick Rd											
1	L2	175	2.0	0.469	8.3	LOS A	2.7	68.4	0.47	0.34	30.3
6	T1	784	2.0	0.469	8.3	LOS A	2.7	68.4	0.47	0.34	30.4
16	R2	103	2.0	0.469	8.3	LOS A	2.7	68.4	0.47	0.34	29.8
Appr		1062	2.0	0.469	8.3	LOS A	2.7	68.4	0.47	0.34	30.3
North: Montana Ave											
7	L2	72	2.0	0.568	17.6	LOS C	3.4	86.8	0.83	0.96	27.1
4	T1	124	2.0	0.568	17.6	LOS C	3.4	86.8	0.83	0.96	26.9
14	R2	119	2.0	0.568	17.6	LOS C	3.4	86.8	0.83	0.96	26.3
Appr		314	2.0	0.568	17.6	LOS C	3.4	86.8	0.83	0.96	26.7
West: Ustick Rd											
5	L2	82	2.0	0.327	7.1	LOS A	1.5	37.5	0.51	0.45	30.9
2	T1	500	2.0	0.327	7.1	LOS A	1.5	37.5	0.51	0.45	31.0
12	R2	52	2.0	0.327	7.1	LOS A	1.5	37.5	0.51	0.45	30.3
Approach		634	2.0	0.327	7.1	LOS A	1.5	37.5	0.51	0.45	30.9
All Vehicles		2222	2.0	0.568	9.2	LOS A	3.4	86.8	0.55	0.49	29.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Friday, September 25, 2015 4:46:40 PM
Project: X:\projects\251501\TrafficISIDRAIUstick-MontanalUstick-Montana.sip6

	4	\rightarrow	7			4	4	\dagger	7	\pm	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	44	「	${ }^{*}$	44	7゙	${ }^{7}$	4	「゙	${ }^{1}$	4	「
Traffic Volume（veh／h）	60	590	70	140	480	105	30	55	160	65	55	70
Future Volume（veh／h）	60	590	70	140	480	105	30	55	160	65	55	70
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765
Adj Flow Rate，veh／h	67	656	78	156	533	117	33	61	178	72	61	78
Adj No．of Lanes	1	2	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	430	1535	687	408	1621	725	467	618	525	431	618	525
Arrive On Green	0.04	0.46	0.46	0.07	0.48	0.48	0.35	0.35	0.35	0.35	0.35	0.35
Sat Flow，veh／h	1681	3353	1500	1681	3353	1500	1245	1765	1500	1136	1765	1500
Grp Volume（v），veh／h	67	656	78	156	533	117	33	61	178	72	61	78
Grp Sat Flow（s），veh／h／ln	1681	1676	1500	1681	1676	1500	1245	1765	1500	1136	1765	1500
Q Serve（g＿s），s	2.5	15.8	3.6	5.8	11.7	5.2	2.2	2.8	10.5	5.5	2.8	4.3
Cycle Q Clear（g＿c），s	2.5	15.8	3.6	5.8	11.7	5.2	5.0	2.8	10.5	8.3	2.8	4.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	430	1535	687	408	1621	725	467	618	525	431	618	525
V／C Ratio（X）	0.16	0.43	0.11	0.38	0.33	0.16	0.07	0.10	0.34	0.17	0.10	0.15
Avail Cap（c＿a），veh／h	486	1535	687	561	1621	725	467	618	525	431	618	525
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	16.0	21.9	18.6	16.2	19.0	17.4	27.9	26.3	28.8	29.0	26.3	26.7
Incr Delay（d2），s／veh	0.2	0.9	0.3	0.6	0.5	0.5	0.3	0.3	1.7	0.8	0.3	0.6
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	2.1	12.0	2.8	4.9	9.4	4.1	1.4	2.5	8.1	3.3	2.5	3.4
LnGrp Delay（d），s／veh	16.2	22.8	18.9	16.8	19.6	17.8	28.2	26.6	30.5	29.9	26.6	27.3
LnGrp LOS	B	C	B	B	B	B	C	C	C	C	C	C
Approach Vol，veh／h		801			806			272			211	
Approach Delay，s／veh		21.9			18.8			29.4			28.0	
Approach LOS		C			B			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration（ $G+Y+R c$ ），s		47.0	13.1	59.9		47.0	10.0	63.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting（Gmax），s		42.0	19.0	44.0		42.0	9.0	54.0				
Max Q Clear Time（g＿c＋11），s		12.5	7.8	17.8		10.3	4.5	13.7				
Green Ext Time（p＿c），s		1.9	0.3	9.8		1.9	0.0	11.1				
Intersection Summary												
HCM 2010 Ctrl Delay			22.3									
HCM 2010 LOS			C									

	4	\rightarrow	1			4	4	\dagger	7	\pm	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	44	「	${ }^{*}$	44	T	${ }^{*}$	4	「	${ }^{1}$	4	「
Traffic Volume（veh／h）	80	485	50	170	760	100	30	85	90	70	120	115
Future Volume（veh／h）	80	485	50	170	760	100	30	85	90	70	120	115
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765	1765
Adj Flow Rate，veh／h	82	500	52	175	784	103	31	88	93	72	124	119
Adj No．of Lanes	1	2	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	319	1449	648	472	1566	700	360	559	475	396	559	475
Arrive On Green	0.04	0.43	0.43	0.08	0.47	0.47	0.32	0.32	0.32	0.32	0.32	0.32
Sat Flow，veh／h	1681	3353	1500	1681	3353	1500	1132	1765	1500	1198	1765	1500
Grp Volume（v），veh／h	82	500	52	175	784	103	31	88	93	72	124	119
Grp Sat Flow（s），veh／h／ln	1681	1676	1500	1681	1676	1500	1132	1765	1500	1198	1765	1500
Q Serve（g＿s），s	3.2	11.9	2.4	6.9	19.5	4.7	2.5	4.3	5.4	5.5	6.2	7.1
Cycle Q Clear（g＿c），s	3.2	11.9	2.4	6.9	19.5	4.7	8.7	4.3	5.4	9.8	6.2	7.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	319	1449	648	472	1566	700	360	559	475	396	559	475
V／C Ratio（X）	0.26	0.35	0.08	0.37	0.50	0.15	0.09	0.16	0.20	0.18	0.22	0.25
Avail Cap（c＿a），veh／h	404	1449	648	610	1566	700	360	559	475	396	559	475
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	18.6	22.7	20.0	16.9	22.3	18.3	33.3	29.5	29.9	33.0	30.1	30.4
Incr Delay（d2），s／veh	0.4	0.7	0.2	0.5	1.1	0.4	0.5	0.6	0.9	1.0	0.9	1.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	1.5	5.6	1.1	3.2	9.3	2.0	0.8	2.2	2.4	1.9	3.2	3.1
LnGrp Delay（d），s／veh	19.0	23.4	20.3	17.4	23.4	18.7	33.8	30.1	30.8	34.0	31.1	31.7
LnGrp LOS	B	C	C	B	C	B	C	C	C	C	C	C
Approach Vol，veh／h		634			1062			212			315	
Approach Delay，s／veh		22.6			22.0			30.9			32.0	
Approach LOS		C			C			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration（ $G+Y+R c$ ），s		45.0	16.1	58.9		45.0	12.0	63.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		7.0	7.0	7.0		7.0	7.0	7.0				
Max Green Setting（Gmax），s		38.0	19.0	42.0		38.0	11.0	50.0				
Max Q Clear Time（g＿c＋11），s		10.7	8.9	13.9		11.8	5.2	21.5				
Green Ext Time（p＿c），s		2.3	0.3	10.8		2.3	0.1	10.9				
Intersection Summary												
HCM 2010 Ctrl Delay			24.4									
HCM 2010 LOS			C									

LEVEL OF SERVICE

Site: 2020 No-Build PM

Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	B	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2020 No-Build PM

Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	31	2.0	0.300	7.6	LOS A	1.3	31.9	0.57	0.55	31.0
8	T1	165	2.0	0.300	7.6	LOS A	1.3	31.9	0.57	0.55	30.8
18	R2	57	2.0	0.300	7.6	LOS A	1.3	31.9	0.57	0.55	29.9
Appr		253	2.0	0.300	7.6	LOS A	1.3	31.9	0.57	0.55	30.6
East: Ustick Rd											
1	L2	67	2.0	0.512	9.8	LOS A	3.0	77.4	0.59	0.52	30.1
6	T1	330	2.0	0.512	9.8	LOS A	3.0	77.4	0.59	0.52	29.9
16	R2	124	2.0	0.512	9.8	LOS A	3.0	77.4	0.59	0.52	29.1
Appr		521	2.0	0.512	9.8	LOS A	3.0	77.4	0.59	0.52	29.7
North: Indiana Ave											
7	L2	93	2.0	0.543	11.2	LOS B	3.4	86.2	0.66	0.68	29.5
4	T1	232	2.0	0.543	11.2	LOS B	3.4	86.2	0.66	0.68	29.2
14	R2	175	2.0	0.543	11.2	LOS B	3.4	86.2	0.66	0.68	28.4
Approach		500	2.0	0.543	11.2	LOS B	3.4	86.2	0.66	0.68	29.0
West: Ustick Rd											
5	L2	124	2.0	0.477	9.6	LOS A	2.6	66.9	0.60	0.57	29.9
2	T1	309	2.0	0.477	9.6	LOS A	2.6	66.9	0.60	0.57	29.7
12	R2	21	2.0	0.477	9.6	LOS A	2.6	66.9	0.60	0.57	28.9
Approach		454	2.0	0.477	9.6	LOS A	2.6	66.9	0.60	0.57	29.7
All Vehicles		1727	2.0	0.543	9.8	LOS A	3.4	86.2	0.61	0.59	29.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LEVEL OF SERVICE

Site: 2020 Base PM - Modified Multilane
Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SIX MILE ENGINEERING PA | Processed: Friday, September 04, 2015 10:53:31 AM
Project: X:\projects\251501\Traffic\SIDRAIUstick-Indiana\Ustick-Indiana.sip6

MOVEMENT SUMMARY

Site: 2020 Base PM - Modified Multilane
Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	31	2.0	0.232	6.7	LOS A	0.9	23.5	0.54	0.51	31.4
8	T1	165	2.0	0.232	6.7	LOS A	0.9	23.5	0.54	0.51	31.1
18	R2	57	2.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Appr		253	2.0	0.232	5.2	LOS A	0.9	23.5	0.42	0.40	31.7
East: Ustick Rd											
1	L2	67	2.0	0.391	7.8	LOS A	1.9	48.6	0.51	0.43	30.9
6	T1	330	2.0	0.391	7.8	LOS A	1.9	48.6	0.51	0.43	30.7
16	R2	124	2.0	0.083	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Appr		521	2.0	0.391	5.9	LOS A	1.9	48.6	0.39	0.33	31.4
North: Indiana Ave											
7	L2	93	2.0	0.353	7.8	LOS A	1.6	40.5	0.55	0.51	30.6
4	T1	232	2.0	0.353	7.8	LOS A	1.6	40.5	0.55	0.51	30.4
14	R2	175	2.0	0.117	0.0	LOS A	0.0	0.0	0.00	0.00	33.7
Approach		500	2.0	0.353	5.1	LOS A	1.6	40.5	0.36	0.33	31.5
West: Ustick Rd											
5	L2	124	2.0	0.455	9.2	LOS A	2.4	61.1	0.59	0.55	30.1
2	T1	309	2.0	0.455	9.2	LOS A	2.4	61.1	0.59	0.55	29.8
12	R2	21	2.0	0.014	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Appr		454	2.0	0.455	8.8	LOS A	2.4	61.1	0.56	0.53	30.1
All V		1727	2.0	0.455	6.3	LOS A	2.4	61.1	0.43	0.39	31.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LEVEL OF SERVICE

Site: 2020 Base PM - Multilane
Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2020 Base PM - Multilane
Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave 0											
3	L2	31	2.0	0.150	5.8	LOS A	0.6	14.3	0.51	0.46	31.6
8	T1	165	2.0	0.150	5.8	LOS A	0.6	14.3	0.51	0.46	31.5
18	R2	57	2.0	0.150	5.8	LOS A	0.6	14.3	0.51	0.46	30.8
Appr		253	2.0	0.150	5.8	LOS A	0.6	14.3	0.51	0.46	31.4
East: Ustick Rd											
1	L2	67	2.0	0.256	6.0	LOS A	1.1	28.0	0.45	0.36	31.4
6	T1	330	2.0	0.256	6.0	LOS A	1.1	28.0	0.45	0.36	31.4
16	R2	124	2.0	0.256	6.0	LOS A	1.1	28.0	0.45	0.36	30.7
Appr		521	2.0	0.256	6.0	LOS A	1.1	28.0	0.45	0.36	31.2
North: Indiana Ave											
7	L2	93	2.0	0.271	6.7	LOS A	1.1	29.1	0.52	0.46	30.9
4	T1	232	2.0	0.271	6.7	LOS A	1.1	29.1	0.52	0.46	30.8
14	R2	175	2.0	0.271	6.7	LOS A	1.1	29.1	0.52	0.46	30.4
Appr		500	2.0	0.271	6.7	LOS A	1.1	29.1	0.52	0.46	30.7
West: Ustick Rd											
5	L2	124	2.0	0.238	6.2	LOS A	1.0	25.1	0.48	0.42	30.7
2	T1	309	2.0	0.238	6.2	LOS A	1.0	25.1	0.48	0.42	31.3
12	R2	21	2.0	0.238	6.2	LOS A	1.0	25.1	0.48	0.42	30.7
Approach		454	2.0	0.238	6.2	LOS A	1.0	25.1	0.48	0.42	31.1
All Vehicles		1727	2.0	0.271	6.2	LOS A	1.1	29.1	0.49	0.42	31.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LEVEL OF SERVICE

Site: 2040 No-Build PM

Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	E	F	F	E	F

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2040 No-Build PM

Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	93	2.0	0.935	46.4	LOS E	12.6	319.6	0.98	1.55	20.3
8	T1	361	2.0	0.935	46.4	LOS E	12.6	319.6	0.98	1.55	20.2
18	R2	144	2.0	0.935	46.4	LOS E	12.6	319.6	0.98	1.55	19.8
Appr		598	2.0	0.935	46.4	LOS E	12.6	319.6	0.98	1.55	20.1
East: Ustick Rd											
1	L2	175	2.0	1.682	327.9	LOS F	177.2	4501.8	1.00	6.78	5.8
6	T1	876	2.0	1.682	327.9	LOS F	177.2	4501.8	1.00	6.78	5.8
16	R2	227	2.0	1.682	327.9	LOS F	177.2	4501.8	1.00	6.78	5.8
Appr		1278	2.0	1.682	327.9	LOS F	177.2	4501.8	1.00	6.78	5.8
North: Indiana Ave											
7	L2	144	2.0	1.122	95.1	LOS F	41.7	1059.1	1.00	2.89	14.1
4	T1	392	2.0	1.122	95.1	LOS F	41.7	1059.1	1.00	2.89	14.1
14	R2	258	2.0	1.122	95.1	LOS F	41.7	1059.1	1.00	2.89	13.9
Appr		794	2.0	1.122	95.1	LOS F	41.7	1059.1	1.00	2.89	14.0
West: Ustick Rd											
5	L2	186	2.0	0.926	38.8	LOS E	14.7	373.6	1.00	1.48	21.7
2	T1	515	2.0	0.926	38.8	LOS E	14.7	373.6	1.00	1.48	21.6
12	R2	41	2.0	0.926	38.8	LOS E	14.7	373.6	1.00	1.48	21.2
Approach		742	2.0	0.926	38.8	LOS E	14.7	373.6	1.00	1.48	21.6
All Vehicles		3412	2.0	1.682	161.5	LOS F	177.2	4501.8	1.00	3.81	10.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Tuesday, September 08, 2015 9:58:31 AM
Project: X:\projects\251501\TrafficISIDRAIUstick-Indiana\Ustick-Indiana.sip6

LEVEL OF SERVICE

Site: 2040 Special PM - Modified Multilane
Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	C	F	C	E	F

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2040 Special PM - Modified Multilane

Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	93	2.0	0.720	22.6	LOS C	5.0	127.7	0.84	1.02	25.7
8	T1	361	2.0	0.720	22.6	LOS C	5.0	127.7	0.84	1.02	25.5
18	R2	144	2.0	0.097	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Appro		598	2.0	0.720	17.1	LOS C	5.0	127.7	0.64	0.77	27.1
East: Ustick Rd											
1	L2	175	2.0	1.383	198.0	LOS F	105.3	2675.2	1.00	5.04	8.7
6	T1	876	2.0	1.383	198.0	LOS F	105.3	2675.2	1.00	5.04	8.7
16	R2	227	2.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	33.7
Appr		1278	2.0	1.383	162.9	LOS F	105.3	2675.2	0.82	4.15	9.9
North: Indiana Ave											
7	L2	144	2.0	0.856	34.8	LOS D	8.3	211.2	0.92	1.27	22.5
4	T1	392	2.0	0.856	34.8	LOS D	8.3	211.2	0.92	1.27	22.4
14	R2	258	2.0	0.172	0.0	LOS A	0.0	0.0	0.00	0.00	33.7
Appr		794	2.0	0.856	23.5	LOS C	8.3	211.2	0.62	0.86	25.1
West: Ustick Rd											
5	L2	186	2.0	0.942	43.7	LOS E	15.1	382.8	1.00	1.57	20.7
2	T1	515	2.0	0.942	43.7	LOS E	15.1	382.8	1.00	1.57	20.6
12	R2	41	2.0	0.028	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Approach		742	2.0	0.942	41.3	LOS E	15.1	382.8	0.94	1.48	21.1
All Vehicles		3412	2.0	1.383	78.5	LOS F	105.3	2675.2	0.77	2.21	15.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Tuesday, September 08, 2015 10:01:26 AM
Project: X:\projects\251501\TrafficISIDRAIUstick-Indiana\Ustick-Indiana.sip6

LEVEL OF SERVICE

Site: 2040 Special PM - Multilane

Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	B	D	E	B	C

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 2040 Special PM - Multilane

Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	93	2.0	0.474	13.1	LOS B	2.3	58.4	0.72	0.78	28.5
8	T1	361	2.0	0.474	13.1	LOS B	2.3	58.4	0.72	0.78	28.5
18	R2	144	2.0	0.474	13.1	LOS B	2.3	58.4	0.72	0.78	28.0
Appr		598	2.0	0.474	13.1	LOS B	2.3	58.4	0.72	0.78	28.4
East: Ustick Rd											
1	L2	175	2.0	0.841	28.6	LOS D	9.1	230.8	0.94	1.22	24.0
6	T1	876	2.0	0.841	28.6	LOS D	9.1	230.8	0.94	1.22	24.0
16	R2	227	2.0	0.841	28.6	LOS D	9.1	230.8	0.94	1.22	23.5
Appr		1278	2.0	0.841	28.6	LOS D	9.1	230.8	0.94	1.22	23.9
North: Indiana Ave											
7	L2	144	2.0	0.826	38.2	LOS E	6.1	155.8	0.91	1.22	21.7
4	T1	392	2.0	0.826	38.2	LOS E	6.1	155.8	0.91	1.22	21.7
14	R2	258	2.0	0.826	38.2	LOS E	6.1	155.8	0.91	1.22	21.3
Appr		794	2.0	0.826	38.2	LOS E	6.1	155.8	0.91	1.22	21.6
West: Ustick Rd											
5	L2	186	2.0	0.521	13.0	LOS B	2.8	71.9	0.72	0.79	28.2
2	T1	515	2.0	0.521	13.0	LOS B	2.8	71.9	0.72	0.79	28.6
12	R2	41	2.0	0.521	13.0	LOS B	2.8	71.9	0.72	0.79	28.1
Approach		742	2.0	0.521	13.0	LOS B	2.8	71.9	0.72	0.79	28.5
All Vehicles		3412	2.0	0.841	24.7	LOS C	9.1	230.8	0.84	1.05	24.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Tuesday, September 08, 2015 9:52:41 AM
Project: X:\projects\251501\TrafficISIDRAIUstick-Indiana\Ustick-Indiana.sip6

LEVEL OF SERVICE

Site: 2030 PM - Modified Multilane
Indiana/Ustick
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	A	C	B	C	C

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Tuesday, September 08, 2015 10:02:55 AM
Project: X:\projects\251501\Traffic\SIDRAIUstick-IndianalUstick-Indiana.sip6

MOVEMENT SUMMARY

Site: 2030 PM - Modified Multilane
Indiana/Ustick
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Indiana Ave											
3	L2	62	2.0	0.446	11.1	LOS B	2.2	55.6	0.68	0.72	29.5
8	T1	263	2.0	0.446	11.1	LOS B	2.2	55.6	0.68	0.72	29.3
18	R2	103	2.0	0.069	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Appr		428	2.0	0.446	8.4	LOS A	2.2	55.6	0.52	0.55	30.3
East: Ustick Rd											
1	L2	124	2.0	0.827	24.5	LOS C	9.7	247.4	0.94	1.16	25.2
6	T1	603	2.0	0.827	24.5	LOS C	9.7	247.4	0.94	1.16	25.1
16	R2	175	2.0	0.117	0.0	LOS A	0.0	0.0	0.00	0.00	33.7
Appr		902	2.0	0.827	19.7	LOS C	9.7	247.4	0.76	0.94	26.4
North: Indiana Ave											
7	L2	119	2.0	0.652	18.3	LOS C	4.2	106.1	0.80	0.93	26.9
4	T1	314	2.0	0.652	18.3	LOS C	4.2	106.1	0.80	0.93	26.7
14	R2	216	2.0	0.145	0.0	LOS A	0.0	0.0	0.00	0.00	33.7
Approach		649	2.0	0.652	12.2	LOS B	4.2	106.1	0.53	0.62	28.7
West: Ustick Rd											
5	L2	155	2.0	0.692	17.1	LOS C	5.4	138.3	0.81	0.93	27.3
2	T1	412	2.0	0.692	17.1	LOS C	5.4	138.3	0.81	0.93	27.1
12	R2	31	2.0	0.021	0.0	LOS A	0.0	0.0	0.00	0.00	33.8
Approach		598	2.0	0.692	16.2	LOS C	5.4	138.3	0.76	0.89	27.4
All Vehicles		2577	2.0	0.827	15.1	LOS C	9.7	247.4	0.66	0.78	27.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SIX MILE ENGINEERING PA | Processed: Tuesday, September 08, 2015 10:02:55 AM
Project: X:\projects\251501\TrafficISIDRAIUstick-Indiana\Ustick-Indiana.sip6

Appendix C Environmental Scan

ENVIRONMENTAL SCAN

Ustick Road, Montana to Indiana, Pre-Concept
 Caldwell, Idaho
 COMPASS Project No. 2015-16

Prepared by
Bionomics Environmental, Inc. 1045 E Winding Creek Drive
Eagle, Idaho 83616

September 4, 2015

TABLE OF CONTENTS

1 Introduction 2
2 Project Description 2
3 Methods 2
4 Environmental Scan 3
4.1 Cultural Resources 3
4.2 Waters of the US, including Wetlands 4
4.3 Threatened, Endangered, and Sensitive Species 5
4.4 Noise 5
4.5 Air Quality 5
4.6 Hazardous Materials 5
4.7 Minority and Low Income Populations/Environmental Justice 6
4.8 Water Quality 6
4.9 Section 6(f) Land and Water Conservation Funds 7
4.10 Prime Farmland 7
5 Conclusions 8
6. References 10
7 Preparers 11
LIST OF TABLES
Table 1. Summary of Previous Studies Within the Project Area 3
Table 2. Previously Recorded Archaeological and Historic Sites Known Within the Project Area 4
Table 3. List of endangered, threatened, and candidate species for the Project Area (USFWS IPaC list derived on August 26, 2015) 5
APPENDIX A: SUPPORTING DOCUMENTATION
Figure 1. Vicinity Map for the Ustick Road, Montana to Indiana Project Area. 13
Figure 2. Site Map for the Ustick Road, Montana to Indiana Project Area. 14
Figure 3. Previously Recorded Sites Within a $1 / 2$ Mile of the Ustick Road, Montana to Indiana Project Area. 15
Figure 4. Waters and Wetlands Identified in the Ustick Road, Montana to Indiana Preojct Area. 16
USFWS IPaC Trust Resource Report for the Project Area (August 26, 2015) 17
Figure 5. Wells within $1 / 2$ Mile of the Ustick Road, Montana to Indiana Project Area. 24
Figure 6. Flood Insurance Rate Map for Canyon County, Idaho and Incorporated Areas dated May 24, 2011 25
Figure 7. Prime Farmlands Identified in the Ustick Road, Montana to Indiana Project Area. 26

1 Introduction

The Community Planning Association of Southwest Idaho has tasked Six Mile Engineering to prepare a pre-concept report for improvements to Ustick Road from Montana Avenue to Indiana Avenue in Caldwell, Idaho (see Appendix A, Figure 1). As part of the pre-concept report, the following environmental scan will identify environmental resources within the study boundary that may be impacted by the proposed project and identify any red flag issues. The scan will also identify environmental permits that may be required during future design and construction phases.

2 Project Description

The Ustick Road project is located in the western portion of the City of Caldwell. Ustick Road is a rural two-lane roadway with a posted speed limit of 35 miles per hour. Within the project limits, Montana Avenue is a rural two-lane roadway.
The project is intended to widen Ustick Road to five lanes from west of Montana Avenue to Indiana Avenue and to install a traffic signal or roundabout at the Montana intersection if warranted (see Appendix A, Figure 2). The proposed cross section will also include bike lanes in both directions.

The project will include new sidewalk on both sides of Ustick Road. A YMCA is located on Indiana north of Ustick, and there are several schools located within a one-mile radius of the project area. The proposed YMCA Corridor Pathway will cross Ustick Road midway between Montana and Indiana. A pedestrian hybrid beacon (HAWK signal) will be included at this crossing.
The evaluation of proposed improvements at the Montana-Ustick intersection will include a conventional traffic signal and a roundabout. A traffic signal may be a better candidate due to property impacts, depending on the traffic analysis results.

3 Methods

This technical document utilized existing documentation and studies available from various regulatory agencies, including:

- Archaeological and Historical Site Atlas
- National Register of Historic Places (NRHP)
- US Fish and Wildlife Service (USFWS) National Wetlands Inventory Maps
- Soil Survey Maps, US Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS)
- Idaho Conservation Data Center (CDC) informational request
- USFWS Information for Planning Conservation (IPaC)
- Noise Guidance from Federal Highway Administration, June 2010, Highway Traffic Noise: Analysis and Abatement Guidance
- Air Quality Division, Idaho Department of Environmental Quality (DEQ)
- Underground Storage Tanks/Leaking Underground Storage Tanks Database, DEQ
- Envirofacts Database, Environmental Protection Agency (EPA)
- Emergency Response Database, National Response Center
- Water Quality Division, DEQ
- Well Inventory Database, Idaho Department of Water Resources (DWR)
- County List of Funds Granted, State Land and Water Conservation Funds (LWCF)

4 Environmental Scan

4.1 Cultural Resources

A record search (\#15351) was conducted at the Idaho State Historic Preservation Office (SHPO) on August 24, 2015. A total of seven surveys have been previously conducted and four sites have been previously recorded within one-half mile of the project area. Table 1 represents the previous studies within one-half mile of the study area, and Table 2 represents the previously recorded historic sites within one-half mile of the study area. Also, a review of aerial maps indicates the presence of historic properties along the north and south side of Ustick Road within the project area, but no formal recommendations or recordations have been made in regards to these properties for this scan.

Table 1. Summary of Previous Studies Within One-Half Mile of the Project Area.

Report No.	Author	Title	Results	Proximity to APE
2014/375	Retter, M.	ID4 Cougs Cellular Telecommunications Project, 4007 South Montana Avenue, Caldwell, Canyon County, Idaho	Two cultural resources identified within 0.5 mile of the project area	0.03 mile north of the project area
2007/542	TEC	Pioneer Irrigation District, Title Transfer, Canyon Co.	One cultural resource identified within 0.5 mile of the project area	At its closest point: 0.04 mile southeast of the project area
2007/562	Mauser, L.	Caldwell Biking-Walking Trail System, South-Central Caldwell. Mauser, Bayview, ID	Three cultural resources identified within 0.5 mile of the project area	0.5 mile north/northwest of the project area
2001/973	Mauser, L.	City of Caldwell Brother's Park Development, Caldwell, Idaho. Archaeological and Historical Resource Consulting, Boise, Idaho	No cultural resources identified within 0.5 mile of the project area	0.23 mile east of the project area
2000/965	Mauser, L.	CRS for the Portstewart Senior Community Apartments, Caldwell, Idaho. Archaeological and Historical Consulting, Boise, ID	No cultural resources identified within 0.5 mile of the project area	0.43 mile west of the project area
1996/1039	Miss, C., et. al.	Cultural Resources Inventory Completed for the Proposed Worldcom Seattle to Salt Lake City Fiber Optic Line Part 2: Idaho. Northwest Archaeological Associates, Inc.	Archived Report Not available at Idaho SHPO	Archived Report - Not available at Idaho SHPO
1992/318	Petersen, N.	Linden Street, Caldwell. Idaho Transportation Dept.	Archived Report Not available at Idaho SHPO	Archived Report - Not available at Idaho SHPO

Table 2. Previously Recorded Historic Sites Within One-Half Mile of the Project Area.

Site No.	Name/Type of Site	NRHP Eligibility	Proximity to APE
$27-19639$	Caldwell Low Line Canal	Eligible	At its closest point - 575 feet north of the project area
$27-19653$	Dixie Drain - Pioneer Irrigation District	Eligible	Within; crosses the project area on the eastern end in a northwest/southeast direction
$27-20215$	Henderson House - 3904 S. Indiana Ave.	Eligible	585 feet northwest project area (at the southern end)
$27-20632$	$2^{\text {nd }}$ Order Unnamed Ditch	Not Eligible	At its closest point - 0.26 miles east of the project area

Summary of the Site Within the Current Project Area (Information in the following section is derived from the respective site form, which is available at the Idaho SHPO):

Dixie Drain - Pioneer Irrigation District (27-19653)
This site was recorded in 2005 and 2007. The Dixie Drain flows through the Caldwell area beginning near Kimball Road east of Caldwell and generally flows south/southeast for approximately 4.2 miles where it ends southwest of the Maple Grove School. Construction began circa1913 and is part of the Pioneer Irrigation District which was formed in 1900 and has a network of drains throughout Canyon County. This site is eligible for listing in the NRHP under Criterion A for its association with the Boise Project and the development of agriculture in the Boise Valley, and Criterion C for engineering design.
The previous studies and surveys outlined above were all identified because they are located within one-half mile of the current project area for the Ustick Road, Montana to Indiana, Pre-Concept Design. These previous surveys provide useful information to the types of cultural resources that have the potential to be encountered during the proposed ground disturbing activities. Notably, the towns of Nampa and Caldwell (specifically) and Treasure Valley (generally) has been used as far back as 14,000 years. A review of aerial photos indicates the presence of historic properties along the project area. The resources identified were not formally recorded for NRHP eligibility. If this project proceeds to a formal Section 106 evaluation, these resources (along with all other properties within the project area) will be formally recorded and eligibility determinations will be made. Prior to construction, it is recommended that all known historic sites within the project area be assessed for NRHP eligibility.

4.2 Waters of the US, including Wetlands

The Dixie Drain and an unidentified irrigation ditch were identified crossing under Ustick Road within the project area (see Appendix A, Figure 4). Both irrigation features were identified through topographic maps and aerial photographs of the project. The Dixie Drain was identified 350 feet west of the intersection of Ustick Road and Indiana Avenue, while the unnamed ditch was identified 250 feet west of the intersection of Ustick Road and Montana Avenue. Review of topographic maps indicates the unnamed ditch flows northwest to the Dixie Drain. The Dixie Drain flows generally in a northern direction to the Boise River, located approximately three miles north of the project area. The Dixie Drain and unnamed irrigation ditch are part of the Pioneer Irrigation District.
Review of the USFWS National Wetland Inventory Maps did not reveal any mapped wetlands within the project area (see Appendix A, Figure 4). Further, review of the Natural Resources Conservation Service Soil Survey data indicates the project area is comprised of the following soils: Bram silt loam, 0 to 3% slopes, and Power silt loam, 0 to 3% slopes. None of these soils are considered hydric. Although existing data sources do not reveal wetlands, the potential for fringe emergent wetland along
irrigation features is likely to occur. A wetland delineation should be conducted to verify presence or absence of wetlands.

The Dixie Drain and unnamed irrigation ditch are likely to be considered under the jurisdiction of the U.S. Army Corps of Engineers (USACE) due to their hydrological connection to the Boise River, a traditional navigable water. Any wetland associated with these irrigation features are also likely considered under the jurisdiction of the USACE. As such, a waters of the U.S. including wetland delineation should be conducted to identify any additional smaller irrigation features within the project area, as well as presence or absence of wetlands. Any purposed construction activity in or near these features could potentially require a permit from the USACE.

4.3 Threatened, Endangered, and Sensitive Species

The USFWS list of endangered, threatened, and candidate species under the Endangered Species Act (ESA) which may occur in the project area can be found in Table 3. No field investigations were made to determine the presence of these species or habitat in the project area. The USFWS Information for Planning Conservation (IPaC) project list can be found in Appendix A.
Table 3. List of endangered, threatened, and candidate species for the Project Area (USFWS IPaC list derived on updated on August 26, 2015).

Species	Scientific Name	Federal Status
Slickspot peppergrass	Lepidium papilliferum	Proposed endangered

No field investigations were made to determine the presence of these species or habitat in the project area. A survey should be conducted prior to project implementation to determine the presence/absence of the species.

4.4 Noise

For all federally funded projects, noise analysis is required if the project is a Type I project. Type I projects are projects that involve construction of a highway on a new location, substantially change the horizontal or vertical alignment of an existing highway, and/or increase the number of through traffic lanes on an existing highway (FHWA 2010).
The project would be classified as a Type 1 project as it's proposing an additional travel lane. In addition, the potential roundabout at Montana Avenue would shift the horizontal alignment of the existing roadway potentially toward sensitive receptors. Therefore, a noise analysis would be warranted for the project.

4.5 Air Quality

The project is not within a federally designated air quality Non-Attainment Area for CO or PM10. The project is within an Idaho Department of Environmental Quality identified air quality Area of Concern for CO and PM10. (Idaho DEQ, 2015) This project has been identified as being exempt from air quality analysis in accordance with 40 CFR 93.126 . It can therefore be concluded that the project would have no significant adverse impact on air quality.

4.6 Hazardous Materials

All available databases were searched to determine whether the site location or any neighboring properties were listed. The search radius used for each database was taken from the American Society for Testing and Materials (ASTM) Standard E 1527-05. Review of state and federal agency databases did not reveal any records within the ASTM required search radius.

4.7 Minority and Low Income Populations/Environmental Justice

Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, signed by the President on February 11, 1994, directs Federal agencies to take the appropriate and necessary steps to identify and address disproportionately high and adverse effects of Federal projects on the health or environment of minority and low-income populations to the greatest extent practicable and permitted by law.
A minority or low-income population is described in the December 2, 1998, FHWA memo called FHWA Actions to Address Environmental Justice in Minority and Low Income Populations: any readily identifiable group of minority or low-income persons who live in geographic proximity and, if circumstances warrant, geographically dispersed/transient persons who would be similarly affected by a proposed FHWA program, policy or activity.
Census 2000 information identified the following minority population for census tracts in the project area:

- Census Tract 210.01, Block Group1 revealed 1,049 persons (8\%),
- Census Tract 217, Block Group 1 revealed 319 persons (8\%),
- Census Tract 217, Block Group 2 revealed 365 persons (8\%), and
- Census Tract 217, Block Group 3 revealed 106 persons (6%).

The citywide minority population consists of 4,285 persons (9\%). The ethnic population in these block groups is lower than the city average.
Census 2000 information identified the following person living in poverty for census tracts in the project area.

- Census Tract 210.01, Block Group 1 revealed 51 persons (12\%),
- Census Tract 217, Block Group 1 revealed 94 persons (10\%),
- Census Tract 217, Block Group 2 revealed 80 persons (7\%), and
- Census Tract 217, Block Group 3 revealed 29 persons (6\%).

The citywide poverty population consists of 1,757 persons (16\%). The population living in poverty in these block groups is lower than the city average.
Although the above census information did not identify a minority or low-income population in the project area, a windshield survey of the project should be conducted to verify this information.

4.8 Water Quality

Wells
A search of the IDWR well database indicates 37 domestic wells, seven irrigation wells, three municipal wells, and one record indicating a drill and fill within a $1 / 2$ mile search radius of the project. (see Appendix A, Figure 5)
Two wells were identified adjacent to the intersection of Ustick Road and Indiana Ave; however, not within the project area.

Sole Source Aquifer

No sole source aquifer is located in the vicinity of the project area. The closest sole source aquifer, the Eastern Snake River Plain Aquifer, is located in eastern Idaho (Idaho DEQ, 2015).

Impaired Waters

No water quality impaired waterbodies were identified in the project area.

Floodplains

The Federal Emergency Management Administration (FEMA) Flood Insurance Rate Map (Map Number 16027C0243F) dated May 24, 2011 for Canyon County and unincorporated areas did not show a mapped floodplain associated with the Dixie Drain or any other water feature in the project area. See FEMA map in Appendix A.

Navigable Waters

Navigable waters are those waters of the United States that are subject to tidal action shoreward to mean high water, or are used, have been used, or are susceptible to use in interstate or foreign commerce. According to the ITD's Online Environmental Manual, navigable waters in Idaho include Bear Lake, Clear Fork River, Clearwater River, North Fork Clearwater River, Kootenai River, Pack River, Pend Oreille Lake, Pend Oreille River, and Snake River. None of the water bodies identified in the vicinity of the project area are listed as navigable waters.

National Pollutant Discharge Elimination System (NPDES)

Another source of surface water in the project area is stormwater runoff from Ustick Road, Montana Avenue, and Indiana Avenue. The roadways create an impervious surface, which allows stormwater to carry pollutants to roadside ditches. If ground disturbance will be greater than one acre and stormwater will be discharged to waters of the U.S., an NPDES stormwater permit and stormwater pollution prevention plan (SWPPP) in accordance with Federal and State requirements would be required prior to project implementation.

4.9 Section 6(f) Land and Water Conservation Funds

Passed by Congress in 1965, the Recreation Coordination and Development Act established the LWCF, a matching assistance program that provides grants, which pay half the acquisition and development cost of outdoor recreation sites and facilities. Section $6(\mathrm{f})$ of the act prohibits the conversion of property acquired or developed with these grants to a non-recreational purpose without the approval of the US Department of the Interior's (USDOI) National Park Service.
A search of grants funded for Canyon County does not show any LWCF funded projects in the project vicinity.

4.10 Prime Farmland

The Farmlands Protection Policy Act (FPPA) of 1981 intended to minimize the impact Federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. It assures that to the extent possible federal programs are administered to be compatible with state, local units of government, and private programs and policies to protect farmland. For the purpose of FPPA, farmland includes prime farmland, unique farmland, and land of statewide or local importance. Farmland subject to FPPA requirements do not have to be currently used for cropland. These lands can be forest land, pastureland, cropland, or other land, but not water or urban and built-up land (developed areas).
Review of the Canyon County soil survey for the project area identified Bram silt loam, 0 to 3% slopes and Power silt loam, 0 to 3% slopes. Both soil complexes are considered prime farmland if irrigated. However, the Bram silt loam soil complex also needs to be reclaimed of excess salts and sodium to be considered prime farmland.

Depending on the layout of the project, there is a potential to impact prime farmlands. If determined to be impacted, consultation with the NRCS and completion of the NRCS Prime Farmland Conversion Form AD-1006 would need to be completed.

5 Conclusions

The environmental scan report has identified existing conditions for the Ustick Road, Montana to Indiana Avenue project based on a desktop review of available information. This document does not serve as the environmental document for any proposed future design phases; it should be used only as a guide to identify potential resources of concern within the area. No site visits were conducted as part of this scan. The environmental scan of the Ustick Road, Montana to Indiana project area revealed the following information:

- Four known previously recorded cultural resource sites within a $1 / 2$ mile of the project area. One of those sites, the Dixie Drain, was identified crossing the project area which is a NRHP eligible site.
- The Dixie Drain and an unnamed irrigation ditch were identified in the project area. Both irrigation ditches are considered a water of the U.S. and likely under the jurisdiction of the USACE due to their eventual hydrological connection to the Boise River, a traditional navigable waterway. Any fringe wetlands associated with these drainages would also be considered under the jurisdiction of the USACE.
- The USFWS IPaC list identifies slickspot peppergrass as potentially occurring in the project area.
- The project is within an Idaho DEQ identified air quality Area of Concern for CO and PM10. The project is exempt from an air quality analysis in accordance with 40 CFR 93.126, and, therefore, it can be concluded that the project would have no significant adverse impact on air quality.
- No hazardous material records were identified with the ASTM search radius.
- Census information did not reveal low-income or minority populations in the project area.
- No surface waters were identified in the project area; therefore, no water quality impaired drainages were identified. In addition, no navigable waters or floodplains were identified. Numerous wells were identified within a $1 / 2$ mile of the project. No sole source aquifer was identified.
- No Section 6(f) resources were identified.
- Prime farmlands were identified along the project area. If determined that prime farmlands are to be impacted, consultation with the NRCS and completion of the NRCS Prime Farmland Conversion Form AD-1006 would need to be completed.

The following technical studies may require completion and approval prior to any construction activity, if federal funds are utilized.

- A categorical exclusion would be required in compliance with NEPA.
- Archaeological and Historic Survey Report, in accordance with Section 106 of the National Historic Preservation Act.
- Waters of the U.S. and Wetland Delineation Report in accordance with Section 404 of the Clean Water Act.
- Biological Evaluation in accordance with Section 7 of the Endangered Species Act, as well as Idaho Species of Concern Report.
- Traffic Noise Analysis in accordance with FHWA guidelines and ITD Noise Policy.
- Hazardous Materials Assessment (project specific).

The following approvals may be necessary, given the resources on or in proximity to the project. This list is not meant to be all inclusive, as additional approval and permits may be necessary based on project specifics.

- Joint Permit Application (to place fill in or dredge waters of the US, including wetlands; to obtain a Section 401 Water Quality Certification; and/or to obtain a state stream alteration permit)
- NPDES Stormwater Permit
- Prime Farmland Conversion

6 References

Federal Emergency Management Agency, Department of Homeland Security. FIRM Maps, Community Panel 243, Map Number 16027C0243F dated May 24, 2011.

Federal Highway Administration. December 2011. Highway Traffic Noise: Analysis and Abatement Guidance

Idaho Department of Environmental Quality. 2015. Attainment Areas in Idaho. Available at http://www.deq.idaho.gov/media/662796-nonattainment_map.pdf

Idaho Department of Environmental Quality. 2015. Groundwater in Idaho: Idaho’s Sole Source Aquifer. Available at
http://www.deq.idaho.gov/media/462639-sole_source_aquifers_west_map.pdf
Idaho Department of Environmental Quality. . UST/LUST Database. Available at http://www.deq.idaho.gov/waste-mgmt-remediation/storage-tanks/ust-lust-sites.aspx.

Idaho Department of Water Resources. 2015. Well Information Search. Available at http://www.idwr.idaho.gov/WaterManagement/WellInformation/DrillerReports/dr_defaul t.htm.

Idaho State Historic Preservation Office home page. 2015. Available at http://history.idaho.gov/.
Idaho Transportation Department Online Manual. Available at http://itd.idaho.gov/manuals/Online_Manuals/Environmental/index.htm.

Land and Water Conservation Funds Grant Database: Idaho. Available at http://www.invw.org/data/lwcf/grants-id.html

United States Army Corps of Engineers Wetland Delineation Manual. 1987. Available at http://www.nww.usace.army.mil/Portals/28/docs/regulatory/Wetlands/Regional_Supplem ent_Arid\%20West.pdf.

US Department of the Interior, US Fish and Wildlife Service, National Wetlands Inventory Wetland Mapper. Available at http://wetlandsfws.er.usgs.gov/wtlnds/launch.html

US Environmental Protection Agency. Envirofacts database, Available at http://www.epa.gov/enviro/.

US Fish and Wildlife Service, IPaC Trust Report. Generated on August 25, 2015.

7 Preparers

Nicole Parks has 12 years of experience in the environmental and natural resources field with emphasis in program and project management. She specializes in field survey, sampling, and report preparation in accordance with state and federal environmental regulations. She has experience and expertise in NEPA compliance regulations and environmental permitting for transportation projects, land development, and infrastructure projects. She has prepared NEPA categorical exclusions and environmental evaluations and assessments. As part of the permitting and assessment process, she performs extensive coordination and consultation with federal, state, and local agencies.

Niki Nickoloff holds a Masters of Applied Anthropology degree and has five years of professional experience in intensive and reconnaissance field surveys for cultural resource investigations, prehistoric and historic site excavation, site recordation that includes mapping and photography, and artifact recordation and preservation. Her experience also includes preparation of site forms for historical sites, background/pre-field research with several agencies including the Idaho SHPO and county offices, and preparation of cultural resource reports according to Section 106 of the National Historic Preservation Act of 1966.

APPENDIX A: Supporting Documentation

- Figure 1. Vicinity Map for the Ustick Road, Montana to Indiana Project Area.
- Figure 2. Site Map for the Ustick Road, Montana to Indiana Project Area
- Figure 3. Previously Recorded Sites Within a $1 / 2$ Mile of the Ustick Road, Montana to Indiana Project Area.
- Figure 4. Waters and Wetlands Identified in the Ustick Road, Montana to Indiana Project Area.
- USFWS IPaC Trust Resource Report for the Project Area (August 26, 2015)
- Figure 5. Wells Identified for the Ustick Road, Montana to Indiana Project Area.
- Figure 6. Flood Insurance Rate Map for Canyon County, Idaho and Incorporated Areas dated May 24, 2011
- Figure 7. Prime Farmlands Identified in the Ustick Road, Montana to Indiana Project Area.

Figure 1. Vicinity Map for the Ustick Road, Montana to Indiana Project Area.

Legend

Ustick Road, Montana to Indiana

IPaC Trust Resource Report

Generated August 26, 2015 01:46 PM MDT

IPaC Trust Resource Report

Project Description

NAME

Ustick Road, Montana to Indiana

PROJECT CODE

WZP7O-KUBBV-B3VGU-NFXNZ-COTEME
LOCATION
Canyon County, Idaho

DESCRIPTION

Road widening, installation of a traffic signal or roundabout, installation of sidewalks, addition of bike lanes.

U.S. Fish \& Wildlife Contact Information

Species in this report are managed by:
Idaho Fish And Wildlife Office
1387 South Vinnell Way, Suite 368
Boise, ID 83709-1657
(208) 378-5243

Endangered Species

Proposed, candidate, threatened, and endangered species that are managed by the Endangered Species Program and should be considered as part of an effect analysis for this project.

This unofficial species list is for informational purposes only and does not fulfill the requirements under Section 7 of the Endangered Species Act, which states that Federal agencies are required to "request of the Secretary of Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action." This requirement applies to projects which are conducted, permitted or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can be obtained by returning to this project on the IPaC website and requesting an Official Species List from the regulatory documents section.

Flowering Plants

Slickspot Peppergrass Lepidium papilliferum
Proposed Endangered
CRITICAL HABITAT
There is proposed critical habitat designated for this species.
https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=Q34X

Critical Habitats

Potential effects to critical habitat(s) within the project area must be analyzed along with the endangered species themselves.

There is no critical habitat within this project area

Migratory Birds

Birds are protected by the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act.

Any activity which results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service (1). There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

You are responsible for complying with the appropriate regulations for the protection of birds as part of this project. This involves analyzing potential impacts and implementing appropriate conservation measures for all project activities.
Bald Eagle Haliaeetus leucocephalus Bird of conservation concern

Bird of conservation concernSeason: Winteringhttps://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B008
Brewer's Sparrow Spizella breweri Bird of conservation concernSeason: Breedinghttps://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=BOHA
Cassin's Finch Carpodacus cassinii Bird of conservation concernYear-round
Eared Grebe Podiceps nigricollis Bird of conservation concern Season: Breeding
Ferruginous Hawk Buteo regalis Bird of conservation concern https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B06X
Fox Sparrow Passerella iliaca Bird of conservation concern
Season: Breeding
Greater Sage-grouse Centrocercus urophasianus Bird of conservation concern

Bird of conservation concernhttps://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B06W
Green-tailed Towhee Pipilo chlorurus Bird of conservation concern
Season: Breeding
Lewis's Woodpecker Melanerpes lewis Bird of conservation concern Season: Breeding
Loggerhead Shrike Lanius ludovicianus Bird of conservation concernSeason: Breedinghttps://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=BOFY
Long-billed Curlew Numenius americanus Bird of conservation concern
Peregrine Falcon Falco peregrinus Bird of conservation concern

Bird of conservation concern

Bird of conservation concern

Rufous Hummingbird selasphorus rufus

Season: Breeding
https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0E1

Sage Thrasher Oreoscoptes montanus

Season: Breeding
Short-eared Owl Asio flammeus
Year-round
https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=BOHD
Swainson's Hawk Buteo swainsoni
Season: Breeding
https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B070

Bird of conservation concern

Bird of conservation concern

Bird of conservation concern

Bird of conservation concern

Refuges

Any activity proposed on National Wildlife Refuge lands must undergo a 'Compatibility Determination' conducted by the Refuge. If your project overlaps or otherwise impacts a Refuge, please contact that Refuge to discuss the authorization process.

There are no refuges within this project area

Wetlands

Impacts to NWI wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes.
 Project proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate U.S. Army Corps of Engineers District.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

There are no wetlands identified in this project area

Figure 5. Wells Identified for the Ustick Road, Montana to Indiana Project Area.
Legend

Half Mile Radius From Project Area

Area of Interest (AOI)

Area of Interest (AOI)
Soils

Soil Rating Polygons

Not prime farmlandAll areas are prime farmlandPrime farmland if drainedPrime farmland if protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigatedPrime farmland if drained and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigated and drainedPrime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season
MAP LEGEND

\cdots Prime farmland if protected from flooding or not frequently flooded during the growing season

* Prime farmland if irrigated
* Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season
Prime farmland if irrigated and drained
* Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season
* Prime farmland if subsoiled, completely removing the root inhibiting soil layer

2. Prime farmland if irrigated and the product of I (soil erodibility) \times C (climate factor) does not exceed 60Prime farmland if irrigated and reclaimed of excess salts and sodium

* Farmland of statewide importance
Farmland of local importance
* Farmland of unique importance
* Not rated or not available

Soil Rating Points

$\square \quad$ Not prime farmland

- All areas are prime farmland
$\square \quad$ Prime farmland if drained
\square Prime farmland if protected from flooding or not frequently flooded during the growing season
$\square \quad$ Prime farmland if irrigated
$\square \quad$ Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season
$\square \quad \begin{aligned} & \text { Prime farmland if } \\ & \text { irrigated and drained }\end{aligned}$
$\square \quad$ Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season
- Prime farmland if subsoiled, completely removing the root inhibiting soil layer
$\square \quad$ Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60
- Prime farmland if irrigated and reclaimed of excess salts and sodium
- Farmland of statewide importance
Farmland of loca importance
\square Farmland of unique importance \square Not rated or not available

Water Features

MAP INFORMATION

\sim Streams and Canals
Transportation
H+ Rails

- Interstate Highways
n US Routes
$\approx \quad$ Major Roads
~ Local Roads

Background

Aerial Photography

The soil surveys that comprise your AOI were mapped at 1:20,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Canyon Area, Idaho
Survey Area Data: Version 11, Sep 8, 2014
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Date(s) aerial images were photographed: Aug 10, 2011—Aug 23, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Farmland Classification

Farmland Classification— Summary by Map Unit - Canyon Area, Idaho (ID665)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BrA	Bram silt loam, 0 to 1 percent slopes	Prime farmland if irrigated and reclaimed of excess salts and sodium	4.7	20.8%
BrB	Bram silt loam, 1 to 3 percent slopes	Prime farmland if irrigated and reclaimed of excess salts and sodium	4.8	21.3%
PhA	Power silt loam, 0 to 1 percent slopes	Prime farmland if irrigated	12.9	57.2%
PhB	Power silt loam, 1 to 3 percent slopes	Prime farmland if irrigated	0.2	$\mathbf{2 2 . 6}$
Totals for Area of Interest		$\mathbf{1 0 0 . 0 \%}$		

Description

Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.

Rating Options

Aggregation Method: No Aggregation Necessary

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The majority of soil attributes are associated with a component of a map unit, and such an attribute has to be aggregated to the map unit level before a thematic map can be rendered. Map units, however, also have their own attributes. An attribute of a map unit does not have to be aggregated in order to render a corresponding thematic map. Therefore, the "aggregation method" for any attribute of a map unit is referred to as "No Aggregation Necessary".

Tie-break Rule: Lower
The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

APPENDIX D ITD Forms

Project Cost Summary Sheet

Round Estimates to Nearest $\$ 1,000$

	Previous ITD 1150	Initial or Revise To
1a. Preliminary Engineering (PE)		
1b. Preliminary Engineering by Consultant (PEC)		
2. Right-of-Way: Number of Parcels 30 Number of Relocations		\$660,000
3. Utility Adjustments: \square Work \square Materials \square By State \square By Others		
4. Earthwork		\$365,000
5. Drainage and Minor Structures		\$411,000
6. Pavement and Base		\$1,604,000
7. Railroad Crossing:		
Grade/Separation Structure At-Grade Signals Yes No		
8. Bridges/Grade Separation Structures:		
New Structure Length/Width		
Location		
Repair/Widening/Rehabilitation Length/Width		
Location		
9. Traffic Items (Delineators, Signing, Channelization, Lighting, and Signals)		\$275,000
10. Construction Traffic Control (Sign, Pavement Markings, Flagging, and Traffic Separation)		\$100,000
11. Detours		
12. Landscaping		\$25,000
13. Mitigation Measures		\$44,000
14. Other Items (Roadside Development, Guardrail, Fencing, Sidewalks, Curb and Gutter, C.S.S. Items)		\$448,000
15. Cost of Constructions (Items 3 through 14)		\$3,272,000
16. Mobilization 10 \% of Item 15		\$327,000
17. Construction Engineer and Contingencies 15 \% of Items 15 and 16		\$540,000
18. Total Construction Cost ($15+16+17)$		\$4,139,000
19. Total Project Cost ($1+2+18$)		\$4,799,000
20. Project Cost Per Mile	\$1,000	\$7,383,000
Prepared By: Six Mile Engineering		

Project Cost Summary Sheet

Round Estimates to Nearest \$1,000

Key Number	Project Number			Date
				10/19/2015
Location				District
Ustick Road, Montana to Indiana, Pre-Concept - Roundabout				3
Segment Code	Begin Mile Post	End Mile Post	Length in Miles	
004875	0.757	1.176	0.65	

Instructions

1. Under Character of Proposed Work, mark appropriate boxes when work includes Bridge Approaches in addition to a Bridge.
2. Attach a Vicinity Map showing the extent of the project limits.
3. Attach an ITD 1150, Project Cost Summary Sheet.
4. Signature of an appropriate local official is the only kind recognized.

Note: In Applying for a Federal-Aid Project, You are Agreeing to Follow all of the Federal Requirements Which Can Add Substantial Time and Costs to the Development of the Project.

Standards	Existing	Proposed	Standards	Existing	Proposed
Number of Lanes	2	4	Roadway Width (Shoulder to Shoulder)	$26-46 \mathrm{ft}$	66 ft
Pavement Type	Asphalt	Asphalt	Right-of-Way Width	$50-90 \mathrm{ft}$	96 ft

Sponsor's Signature
Title

Additional Information to be Furnished by the District

Functional Classification	Terrain Type	20	ADT/DHV

Ustick Road, Montana to Indiana, Pre-Concept ITD 2345
Supplemental Information

School	Location
Heritage Community Charter School	1803 E Ustick Rd, Caldwell
Lewis and Clark Elementary	1102 Laster St, Caldwell
Washington Elementary	2918 Washington Ave, Caldwell
Jefferson Middle School	3311 S 10 ${ }^{\text {th }}$ Ave, Caldwell
Syringa Middle School	1100 Willow St, Caldwell
Caldwell High School	3401 S Indiana Ave, Caldwell
Vallivue Middle School	16412 S 10 th Ave, Caldwell
Vallivue High School	1407 E Homedale Rd, Caldwell

Use this template to create your charter without going into the PSS.

1. Project Information

| Key Number | Project Name
 Ustick Road, Montana to Indiana, Pre-Concept | | | Temporary Key Number |
| :--- | :--- | :--- | :--- | :--- | :--- |
| District | Work Authority | Funding Year | Route(s) | |
| D3 | | | NHS 7983 | |
| Beginning Mile Post(s) | Ending Mile Post(s)
 0.757 | Current Project Phase
 Evaluation Phase | Type of Project
 Reconstruction | |

Program

Highway Local	Public Transit
\square Bridge Local	\square Capital
\square Bridge Off System	\square Operations
\square STP Local Rural	Aeronautics
\square STP Local Urban	\square New Airport Facilities
\square STP Transportation Mgmt. Area	\square Airport Facility Maintenance
\square TAP Transportation Mgmt. Area	\square Airport Planning
Highway Other Federal Programs	\square Aviation System Planning
\square High Priority (SAFETEA LU)	Highway Planning
\square High Priority (TEA 21)	\square Metropolitan Planning MPOs
\square Discretionary Earmarks (carryover)	\square State Planning and Research
\square Emergency Relief	\square Systems Planning
\square Federal Lands Access	Highway Safety
\square Indian Reservation Roads	\square Rest Area
\square Other Federal Non Formula	\square Safety Federal Rail
Highway Other State Programs	\square Safety State Rail
\boxtimes Federal Non-Participating	\square Safety Statewide
\square Local Private Partnership	

Highway Statewide Competitive

 \square CMAQRecreational TrailsSafe Routes to School\square TAP Urban and Rural

SHS Bridges

\square Bridge Preservation
\square Bridge Restoration
SHS Expansion
\square Early Development
\square Expansion
\square Formula Debt Service plus Fees and Interest

SHS Other

State Board UnallocatedSystem SupportSHS Pavements
\square Pavement Preservation
\square Restoration

2. Exit Criteria

Evaluation Phase	Development Phase	Implementation Phase		
Temporary Key No.	Temporary Key No. Date Select	PS\&E Package Delivered Select	Contract Awarded Select	Final Voucher Issued Select

3. Project Organization Chart

Project Sponsor	External Sponsor Sponsor Name City of Caldwell	External Sponsor Name Robb MacDonald	Sponsor Contact Info or Email rmacdonald@cityofcaldwell.org
Project Owner	External Owner Owner Name City of Caldwell Project Manager	External Owner Name Robb MacDonald	Owner Contact Info or Email rmacdonald@cityofcaldwell.org
Project Manager Name	Project Manager Contact Info or Email		

Use this template to create your charter without going into the PSS.

Stakeholders	Interest	Contact Information
Stakeholder Name		

4. Scope and Strategic Objectives

Project Objective Statement

The purpose of this project is to improve operations and safety for all users; vehicles, pedestrians and bicycles.

Strategic Objectives

Safest Transportation System

\square Reduction in injuries and fatalities related to distracted drivingIncrease in seat belt use
Q Impact of corridor-safety initiatives and improvementsReduction in injuries and fatalities to impaired driving

Mobility Focused Transportation

\square Increase in Idaho gross domestic productIncrease in the efficiency in which goods are transported

Implement Innovative Practices

\square Improvement in performance measuresReduction in costs through innovation process improvement and technology

Develop Employees

Effectiveness of the departments leadershipReduction in TurnoverIncrease in employee productivityIndividual performance plans linked to the department's strategic goals\square Total employee compensation compared to similar markets
\square Progress toward the desired organizational culture

Use this template to create your charter without going into the PSS.

Scope of Work

The project will widen Ustick Road between Montana Ave and Indiana Ave to four lanes with a raised median and bike lanes and sidewalks on both sides. The Ustick/Montana intersection will be improved to include a traffic signal or roundabout and the existing roundabout at Ustick and Indiana will be modified to include exclusive right turn slip lanes. Roadway improvements will include installation of stormwater capture and conveyance facilities, and relocation of existing overhead utilities (power, cable).

5. Environmental Considerations

Use this template to create your charter without going into the PSS.

Floodway Floodplain	\square Field Survey	\square Sole Source Aquifer Packet
	\square Floodplain Encroachment Permit App	
	\square Floodplain Encroachment Report	\square Floodway Encroachment Report
Environmental		
Narrative		

6. Design Standards

Crash History													
Crash Base Rate $0.67 / 1.19$		Spot Locations that Exceed Base Rate 0.99 at Montana Ave				Crash Rate with Project Limits 4.59						$\begin{aligned} & \text { ntify } \\ & \text { ation } \end{aligned}$	HALs (High Accident s)
Design Data													
Design Exception Anticipated				Pavement Width Proposed 66'					Traffic Signals \boxtimes Yes \square No				Railroad Crossing Yes \boxtimes No
Pavement Width Existing26'-46'				Pavement Width Existing Standard			Proposed Design VehicleWB-67						$\begin{aligned} & \text { Design Year } \\ & 2040 \end{aligned}$
Posted Speed 35	Design Speed 35		Traffic ADT Present$11,300$		Traffic ADT Future$17,900$				Traffic DHV Present 870			Traffic DHV Future$1,680$	
Project Standards													
Project Standards State	Other Comments												
Additional Design Data - Development Phase Proposed Structures													
Proposed Maximum Super Elevation				Vertical Clearance (Rdwy/Q50)				Existing Bridge Sufficiency Rating				Rail Type	
Minimum Curve Radius Proposed				Deck Width (c-c)			Deck Width (o-o)			Design Load			
Additional Design Data													
Maximum Grade Existing		Maximum Grade Proposed			Minimum Curve Radius Existing				Clear Zone Fill				Clear Zone Cut
Minimum LOS Existing			Minimum LOS Proposed				Access Control Existing			Access Control Proposed			
Traffic Signals													
Existing Location			Proposed Location (Milepost)				Type of Controller			Type of Warrant			
Railroad Crossing Protection													
Existing Location (Milepost)			Proposed Location (Milepost)				Type of Protection			Type of Warrant			

Infrastructure Project Charter Template

Use this template to create your charter without going into the PSS.

Design Standards $\boldsymbol{-}$ Development Phase		
Project Oversight	Design Exception District Engineer Approval Date	
Select	Select	
Design Exception FHWA Approval Date if on NHS	Design Exception Committee Date if Applicable	
Select	Select	

7. Funding and Cost Summary

Phase	Fiscal Year	Amount
Select		

8. Resource Plan and Constraints

Project Constraints

Scope Constraint	
Choose an item.	

Project Constraints Narrative

Resource Plan

Project Design Services
Choose an item.
Narrative

9. True Minimum Milestones

Task WBS	Task Name	Actual Start	Actual Finish	Baseline Start	Baseline Finish
3.20.Z20	CHARTER APPROVAL	Select	Select	Select	Select
3.30.Z30	DESIGN APPROVAL	Select	Select	Select	Select
3.30.Z34	PRELIMINARY DESIGN REVIEW	Select	Select	Select	Select
3.30.Z36	ENVIRONMENTAL DOCUMENT APPROVAL	Select	Select	Select	Select
3.30.Z38	HEARING COMPLETE	Select	Select	Select	Select
3.40.Z41	SITUATION \& LAYOUT APPROVAL	Select	Select	Select	Select
3.40.Z42	INITIATE R/W PURCHASE PROCESS	Select	Select	Select	Select
3.40.Z43	R/W CERTIFIABLE	Select	Select	Select	Select
3.40.Z48	AGREEMENTS COMPLETE	Select	Select	Select	Select
3.40.Z49	FINAL DESIGN REVIEW	Select	Select	Select	Select

Infrastructure Project Charter Template

Use this template to create your charter without going into the PSS.

Task WBS	Task Name	Actual Start	Actual Finish	Baseline Start	Baseline Finish	
$3.50 . Z 50$	PS \& E SUBMITTAL	Select	Select	Select		Select
$3.60 . Z 55$	PROJECT AWARD	Select	Select	Select	Select	
$4.10 . Z 75$	CONTRACT COMPLETION DATE	Select	Select	Select	Select	
$4.10 . Z 80$	PROJECT CLOSEOUT COMPLETE	Select	Select	Select	Select	
$4.20 . Z 60$	CONSTRUCTION START	Select	Select	Select	Select	
$4.20 . Z 70$	CONSTRUCTION COMPLETION	Select	Select	Select	Select	

10. Alternatives Analysis

Title	Location	Description

11. Design Exceptions

Title	NHS	District Engineer	District Engineer Approval \square	District Selec	ngineer Approval Date
Committee Approval Date Select	FHWA Name			FHWA Approval \square	FHWA Approval Date Select

12. Change Requests

Title	Request Date Select	Request No. Request	escription	
Reason for Change	Impact to Schedule, Scope, Budget		Impact to Resources, Risks, Quality	Request Results Select
Request Comments				
Title	Request Date Select	Request No. Request	Request Description	
Reason for Change	Impact to Schedule, Scope, Budget		Impact to Resources, Risks, Quality	Request Results Select
Request Comments				
Title	Request Date Select	Request No. Request	Request Description	
Reason for Change	Impact to Schedule, Scope, Budget		Impact to Resources, Risks, Quality	Request Results Select
Request Comments				

Infrastructure Project Charter Template

Use this template to create your charter without going into the PSS.

13. Lessons Learned

Title	Project Type Select	Project Phase Select
What Worked Well		What Could Be Done Differently
Action Plan		
Title	Project Type Select	Project Phase Select
What Worked Well		What Could Be Done Differently
Action Plan		
Title	Project Type Select	Project Phase Select
What Worked Well		What Could Be Done Differently
Action Plan		
Title	Project Type Select	Project Phase Select
What Worked Well		What Could Be Done Differently
Action Plan		
Title	Project Type Select	Project Phase Select
What Worked Well		What Could Be Done Differently
Action Plan		
Title	Project Type Select	Project Phase Select
What Worked Well		What Could Be Done Differently
Action Plan		

Infrastructure Project Charter Template

Use this template to create your charter without going into the PSS.

14. Issues

Title	Owner	Assigned To	Status Select	Priority Select	Due Date Select
Discussion					
Resolution					
Title	Owner	Assigned To	Status Select	Priority Select	Due Date Select
Discussion					
Resolution					
Title	Owner	Assigned To	Status Select	Priority Select	Due Date Select
Discussion					
Resolution					

15. Risks

Title	Owner	Assigned To	Status Select	Exposure	Due Date Select
Description					
Mitigation Plan					
Title	Owner	Assigned To	Status Select	Exposure	Due Date Select
Description					
Mitigation Plan					
Title	Owner	Assigned To	Status Select	Exposure	Due Date Select
Description					
Mitigation Plan					

