Driven to Wealth: Defining the Economic Benefits of Mass Transit

Jacky Grimshaw
Center for Neighborhood Technology
February 6, 2009
CNT’s Mission:
Livable and Sustainable Communities

1. Benefits economy & environment;
2. Makes good use of existing resources & community assets; and
3. Improves health of natural systems & well-being of people.

Now and in the Future
CNT is a Think-and-Do Tank

We Research, Promote, and Implement Innovative Solutions
“An Innovations Center for Urban Sustainability”

Four Issue Areas
- Climate
- Energy
- Natural Resources
- Transportation & Community Development

Two Affiliates
- I-GO Car Sharing
- CNT Energy
Purpose of Presentation

- To define an objective and achievable set of economic, social & environmental benefits for increasing transportation choice and wealth of the residents of Idaho
What a Nourishing Economy Does—Reduces Risk, Increases Gain

Connectedness

When Coffee Came to London: Lloyd’s Coffee House, Social Capital & Urbanism Create the Insurance Industry, 1700s

Poverty

Productivity

Isolation
Economic Benefits

- What determines the need to travel
- A measure you can take to the bank: location efficiency and the housing + transportation affordability index
- Value creation and value capture associated with different scales of development
- The value of time savings
- Job creation
- Environmental improvement
Trends
Shaping Demand for Residential Locations

• Aging and demographics
• Climate
• Quality of local and regional transportation
• Quality of inter-city transportation
• Cost of living—e.g. energy expenditures
• Perceived “coolness”—cultural amenities, adaptive character, proximity to colleges, etc.
Trends
Shaping Demand for Business Locations

- Population
- Workforce
- Cost of living
- Quality of local and regional transportation
- Quality of inter-city transportation
- Exposure to energy prices
- Access to knowledge institutions and workers
Idaho’s Metro Area and Cities’ Core Assets

- Originally served by streetcars, regional traction and river traffic
- Location efficiency still reflected in basic street patterns and land uses and statewide ROW
- Have significant plans to improve local transportation choices and are looking for investment partners
Income Distribution

1999-2007:

• Median HH income rose 17% ($3547-$4157 per month)

• But to keep pace with inflation, needed 24.5% increase ($4416)

• Avg HH fell behind $259 per month

• Housing costs rose 29% ($981-1267)

• Gas prices 112%
While General Inflation was 24.5%, the Price of Gasoline More than Tripled from $1.25 to $4.10 per gallon
Need to Increase Income AND Reduce Cost of Living

- ID 2000-2008 Gas Prices Grew 8 Times Faster than Income
- 2000 Gas Price Increase Bled Extra $665 Million Annually from ID
- 2008 Total Statewide Passenger Tab >>$1.4B
In Idaho from 2000 to Present, Housing Costs Rose Twice as Fast as Income, Gasoline Costs Rose 8 Times as Fast as Income and 5 Times Faster than Housing
Demographic & Price Trends Promote Urbanism and Demand Reduction

- Continuous drop in household size since 1790
- Aging in place
- "Married w/kids" only 23% of total
- Rising energy and gas prices
- Limited public funds to keep sprawling
Energy and Driving Costs and Demographic Trends Will Keep Growing the Demand for Housing Near Transit

- Unmet demand for 9 million units within ½ mile of America’s 4000 transit stops by 2030
- Many times that within bus or shuttle distance
- Cuts vehicle ownership
- Cuts VMT
- Cuts emissions
Demand for Housing Near Fixed Guideway Transit—Will Grow by 9 Million Households 2005-2030

Idaho Cities Not on This Chart
Market Believes Can’t Have TOD without the T
Legacy Transit Features Helped Shape Land Use

Boise Back in 1924

- Boise population 21,393
- Boise Street Car Co, 5 miles “of which 3 miles are in paved street”, 10 cars, fare 7c cash or 5c per ticket
- Boise Valley Traction, 82 miles
- Connected Boise, Eagle, Star, Middleton, Caldwell, Nampa, Meridian
- 22 passenger, 22 freight cars
In the Meantime...

1924 City Plan Bracketed by Union Station and Capital

The Plan will “beautify Boise and control the River without cost”

1925 UP Mainline hookup made boulevard possible
A region rebuilt around its traffic flow…
Resulting in Mode Split...

- Drove Alone
- Carpooled
- Public Transit
- Walked
- Other Means
Legacy Transit Features Helped Shape Land Use

- Higher population densities
- Much lower vehicle ownership
- Transportation expenditures were 5 percent of HH budgets
Historical Precedent for Rapid Change—From 1885 to 1902

- America went from 1 electric street railway to 1 in every city of 5,000
- Rate of growth = to the Internet
- Demand boosted by important social movements—e.g. home economics
- Idaho had good electric street railway coverage

Getting to scale through network economics—when a large number of connected small investments are worth more than a few big ones
Historical changes

- 1920, Food was 41 percent of HH expenditures, housing 27, transportation 3 percent

- Today food 16, housing 25-35, transportation 15-35 percent respectively
America’s Inter-City System Was Largely Abandoned
Most Places Abandoned Their Transit Systems
How to Get There
What Influences Travel Demand & CO2 From Passenger Transportation

- Net Residential Density
- Transit Level of Service
- Pedestrian Environment
- Income
- HH Size
- Gasoline Price
- Journey to Work
- Access to Amenities
- Urban Form
Travel Demand:

- Density, Transit Access (Proximity, Frequency, Connectivity), and Amenities Determine Transportation Demand

- Statistics Used to Estimate Likely Travel Demand

- Demand is Verified by Measuring Vehicle Ownership and Extent of Use

- Demand is Then Valued in Dollars and Cents
Explain Using Regression?

\[
\frac{V_{eh}}{Hh} = 4.722 \left(22.520 + \frac{H}{RA} \right)^{-0.3471} \left(1 - e^{-\left(0.00011 \frac{P}{P} \right)^{1.0386}} \right) \left(1 + 1.0519 \frac{P}{H} \right) (Tr + 60.312)^{-0.2336}
\]

\[
\frac{V_{MT}}{V_{eh}} = 10386 \left(0.5041 + \frac{H}{TA} \right)^{-0.0419} \left(1 + 0.02759 \frac{P}{H} \right) \left(1 - 0.0704 \sqrt{Ped} \right) - 0.01743 \left(\frac{P}{P} \right) - 22136
\]

\[
\frac{V_{MT}}{Hh} = \frac{V_{eh}}{Hh} \times \frac{V_{MT}}{V_{eh}}
\]
Curve has been shown to work for 54 US Regions, London, Paris, and 37 Japanese Cities.
Mapping the Benefit

- Good transit access yields one less car per HH
- Lowers cost of living by $300-600/month
- Equivalent of increasing income 10-20 percent tax free
Showing the Benefits of Capturing the Value

How much more of Cook County is Affordable for the Working Poor when we count Transportation Savings
Skip the car, buy a house

There's a lot of hand-wringing nowadays about suburban sprawl and the need for "smart growth."

But like the weather, nobody's doing much about it. Much of the home-buying public still opts for wide-open spaces along the metropolitan fringe. And despite thoughtful warnings from civic and regional groups, political realities in Illinois militate against significant governmental action.

Now comes a modest but innovative pilot program that just might make a small difference. Maybe even a big difference—if it educates the public about the true cost of living "out there."

It's called the Location Efficient Mortgage, or LEM, and it has been developed by environmental groups such as Chicago's Center for Neighborhood Technology along with Fannie Mae, the government-chartered, stockholder-owned repurchaser of home mortgages.

It works like this: Participating lenders, in evaluating applicants, take into consideration how close the dwelling is located to public transportation. If it's so close the applicant can live without a car, or a working couple can get by with just one, the estimate of disposable income is increased, and with it, the size of the mortgage for which they qualify.

A couple jointly earning $60,000 and buying into Chicago's transit-rich Edgewater neighborhood, for instance, would qualify for a home selling for $212,218. Out in the boonies, under traditional guidelines, the limit would be $158,364.

And there are sweeteners. LEMs are not subject to income limits and they offer more flexibility, including lower down payments, than conventional mortgages. The City of Chicago, moreover, is offering vouchers worth $900 toward the purchase of energy-efficient appliances to the first 100 LEM borrowers.

Downsides? There's mandatory counseling. And for now it's limited to Chicago and three West Coast cities.

The ultimate value of LEM, however, may be to show, in ways people readily understand, that sprawl does impose costs. Some of that cost is paid, knowingly and gladly, by those who choose to live "out there." Much of it, however, is hidden, and paid indirectly by those who live "back here."

For more information about LEMs call 1-800-732-6643.
Where Has it Been Tried

- LEM’s in Seattle, Chicago, San Francisco, and Los Angeles (Fannie Mae and local lenders)

- Take the T Home Mortgage in Boston (Fannie Mae and state housing finance)

- Smart Commute Mortgages in several dozen cities (Fannie Mae plus local lenders)-Columbus, OH
Another Approach
Indexing Truer Affordability and Relating it to Climate Change

How Housing Affordability is Usually Calculated—Then and Now

• Historically: Traced to 19th Century ideal—A Week’s Pay for a Month’s Rent

• Today benchmark affordability is defined as housing costs/Income less than or equal to 30 Percent of target population AMI

https://htaindex.cnt.org
Where We Build Matters: Poor Locations Drive Up Emissions and Costs
What All Households in 28 Metro Areas Earning Between $20 and $50,000 Spend on Housing and Transportation as a Percentage of Income

Average = 30% for Housing
And 27% for Transportation
=57% for H+T
Percent of Income Spent by Households Earning Less than $20,000 on Housing + Transportation in 28 Metro Areas

<table>
<thead>
<tr>
<th>Metro Area</th>
<th>Percent of Income Spent on Transportation</th>
<th>Percent of Income Spent on Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchorage, AK MSA</td>
<td>12%</td>
<td>65%</td>
</tr>
<tr>
<td>Atlanta, GA MSA</td>
<td>13%</td>
<td>59%</td>
</tr>
<tr>
<td>Baltimore, MD PMSA</td>
<td>11%</td>
<td>65%</td>
</tr>
<tr>
<td>Boston, MA CMSA</td>
<td>18%</td>
<td>52%</td>
</tr>
<tr>
<td>Chicago, IL CMSA</td>
<td>11%</td>
<td>51%</td>
</tr>
<tr>
<td>Cincinnati, OH CMSA</td>
<td>12%</td>
<td>56%</td>
</tr>
<tr>
<td>Cleveland, OH CMSA</td>
<td>10%</td>
<td>61%</td>
</tr>
<tr>
<td>Dallas, TX CMSA</td>
<td>11%</td>
<td>57%</td>
</tr>
<tr>
<td>Denver, CO CMSA</td>
<td>10%</td>
<td>61%</td>
</tr>
<tr>
<td>Detroit, MI CMSA</td>
<td>10%</td>
<td>62%</td>
</tr>
<tr>
<td>Honolulu, HI MSA</td>
<td>11%</td>
<td>54%</td>
</tr>
<tr>
<td>Houston, TX CMSA</td>
<td>11%</td>
<td>60%</td>
</tr>
<tr>
<td>Kansas City, MO-KS MSA</td>
<td>10%</td>
<td>63%</td>
</tr>
<tr>
<td>Los Angeles, CA CMSA</td>
<td>12%</td>
<td>57%</td>
</tr>
<tr>
<td>Minneapolis, MN MSA</td>
<td>11%</td>
<td>60%</td>
</tr>
<tr>
<td>Milwaukee, WI CMSA</td>
<td>10%</td>
<td>59%</td>
</tr>
<tr>
<td>New York, NY CMSA</td>
<td>11%</td>
<td>64%</td>
</tr>
<tr>
<td>Philadelphia, PA CMSA</td>
<td>11%</td>
<td>58%</td>
</tr>
<tr>
<td>Phoenix, AZ MSA</td>
<td>10%</td>
<td>63%</td>
</tr>
<tr>
<td>Pittsburgh, PA MSA</td>
<td>10%</td>
<td>60%</td>
</tr>
<tr>
<td>Portland, OR CMSA</td>
<td>10%</td>
<td>58%</td>
</tr>
<tr>
<td>San Diego, CA MSA</td>
<td>10%</td>
<td>65%</td>
</tr>
<tr>
<td>San Francisco, CA CMSA</td>
<td>10%</td>
<td>64%</td>
</tr>
<tr>
<td>Seattle, WA CMSA</td>
<td>10%</td>
<td>60%</td>
</tr>
<tr>
<td>St. Louis, MO MSA</td>
<td>10%</td>
<td>57%</td>
</tr>
<tr>
<td>Tampa, FL MSA</td>
<td>10%</td>
<td>63%</td>
</tr>
<tr>
<td>Washington, DC PMSA</td>
<td>10%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Average of 28 Metros: 11% (Transportation), 59% (Housing)
Percent of Income Spent on Transportation in 28 Metro Areas

<table>
<thead>
<tr>
<th>City</th>
<th>Transportation</th>
<th>Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchorage, AK MSA</td>
<td>35%</td>
<td>65%</td>
</tr>
<tr>
<td>Atlanta, GA MSA</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>Baltimore, MD PMSA</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>Boston, MA MSA</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>Chicago, IL CMSA</td>
<td>37%</td>
<td>63%</td>
</tr>
<tr>
<td>Cincinnati, OH CMSA</td>
<td>29%</td>
<td>64%</td>
</tr>
<tr>
<td>Cleveland, OH CMSA</td>
<td>27%</td>
<td>64%</td>
</tr>
<tr>
<td>Dallas, TX CMSA</td>
<td>29%</td>
<td>64%</td>
</tr>
<tr>
<td>Denver, CO CMSA</td>
<td>33%</td>
<td>66%</td>
</tr>
<tr>
<td>Detroit, MI CMSA</td>
<td>34%</td>
<td>62%</td>
</tr>
<tr>
<td>Honolulu, HI MSA</td>
<td>27%</td>
<td>65%</td>
</tr>
<tr>
<td>Houston, TX CMSA</td>
<td>26%</td>
<td>67%</td>
</tr>
<tr>
<td>Kansas City, MO-KS MSA</td>
<td>27%</td>
<td>67%</td>
</tr>
<tr>
<td>Los Angeles, CA CMSA</td>
<td>28%</td>
<td>66%</td>
</tr>
<tr>
<td>Miami, FL CMSA</td>
<td>31%</td>
<td>65%</td>
</tr>
<tr>
<td>Milwaukee, WI CMSA</td>
<td>31%</td>
<td>64%</td>
</tr>
<tr>
<td>Minneapolis, MN MSA</td>
<td>31%</td>
<td>63%</td>
</tr>
<tr>
<td>New York, NY CMSA</td>
<td>28%</td>
<td>64%</td>
</tr>
<tr>
<td>Philadelphia, PA CMSA</td>
<td>37%</td>
<td>61%</td>
</tr>
<tr>
<td>Phoenix, AZ MSA</td>
<td>37%</td>
<td>61%</td>
</tr>
<tr>
<td>Pittsburgh, PA MSA</td>
<td>32%</td>
<td>66%</td>
</tr>
<tr>
<td>Portland, OR CMSA</td>
<td>36%</td>
<td>61%</td>
</tr>
<tr>
<td>San Diego, CA MSA</td>
<td>35%</td>
<td>65%</td>
</tr>
<tr>
<td>San Francisco, CA CMSA</td>
<td>39%</td>
<td>66%</td>
</tr>
<tr>
<td>Seattle, WA CMSA</td>
<td>34%</td>
<td>69%</td>
</tr>
<tr>
<td>St. Louis, MO MSA</td>
<td>25%</td>
<td>71%</td>
</tr>
<tr>
<td>Tampa, FL MSA</td>
<td>28%</td>
<td>71%</td>
</tr>
<tr>
<td>Washington, DC PMSA</td>
<td>35%</td>
<td>66%</td>
</tr>
</tbody>
</table>

Average of 28 Metros: 66%
Percent of Income Spent by Households Earning $35,000 to $50,000 in 28 Metro Areas

<table>
<thead>
<tr>
<th>Metro Area</th>
<th>Percent of Income Spent on Transportation</th>
<th>Percent of Income Spent on Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchorage, AK MSA</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>Atlanta, GA MSA</td>
<td>27%</td>
<td>26%</td>
</tr>
<tr>
<td>Baltimore, MD PMSA</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>Boston, MA CCAA</td>
<td>24%</td>
<td>25%</td>
</tr>
<tr>
<td>Chicago, IL CMSA</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>Cincinnati, OH CMSA</td>
<td>27%</td>
<td>25%</td>
</tr>
<tr>
<td>Cleveland, OH CMSA</td>
<td>22%</td>
<td>27%</td>
</tr>
<tr>
<td>Dallas, TX CMSA</td>
<td>22%</td>
<td>21%</td>
</tr>
<tr>
<td>Denver, CO CMSA</td>
<td>25%</td>
<td>22%</td>
</tr>
<tr>
<td>Detroit, MI CMSA</td>
<td>21%</td>
<td>25%</td>
</tr>
<tr>
<td>Honolulu, HI MSA</td>
<td>27%</td>
<td>22%</td>
</tr>
<tr>
<td>Houston, TX CMSA</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>Kansas City, MO-KS MSA</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>Los Angeles, CA CMSA</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>Las Vegas, NV CMSA</td>
<td>24%</td>
<td>24%</td>
</tr>
<tr>
<td>Milwaukee, WI CMSA</td>
<td>23%</td>
<td>25%</td>
</tr>
<tr>
<td>Minneapolis, MN MSA</td>
<td>27%</td>
<td>23%</td>
</tr>
<tr>
<td>New York, NY CMSA</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Philadelphia, PA CMSA</td>
<td>26%</td>
<td>27%</td>
</tr>
<tr>
<td>Phoenix, AZ MSA</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>Pittsburgh, PA MSA</td>
<td>30%</td>
<td>23%</td>
</tr>
<tr>
<td>Portland, OR CMSA</td>
<td>26%</td>
<td>25%</td>
</tr>
<tr>
<td>San Diego, CA MSA</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>San Francisco, CA CMSA</td>
<td>19%</td>
<td>21%</td>
</tr>
<tr>
<td>Seattle, WA CMSA</td>
<td>26%</td>
<td>27%</td>
</tr>
<tr>
<td>St. Louis, MO MSA</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>Tampa, FL MSA</td>
<td>18%</td>
<td>23%</td>
</tr>
<tr>
<td>Washington, DC PMSA</td>
<td>24%</td>
<td>26%</td>
</tr>
<tr>
<td>Average of 28 Metros</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Milwaukee-Racine-Kenosha MSA
Mirror Images—
Density and Vehicle Ownership

0.02 to 32.19 HH per Residential Acre
1.13 to 3.52 Vehicles Per HH
Milwaukee-Racine-Kenosha MSA
Vehicles per HH and VMT/HH/Year

1.13 to 3.52 Vehicles Per HH

8376 to 38175 VMT per HH per Year
Milwaukee-Racine-Kenosha MSA
Transit Ridership and Connectivity

0.03 to 17.76 Percent of Workers

0 to 32.45 Scheduled Rides per Hour
Milwaukee-Racine-Kenosha MSA
Two Views of Affordability
Housing @30% vs H+T@45% of Median Income

Large number of homes
No longer affordable

12.18 to 35.24 % of Median HH Income
30.19 to 66.45 % of Median HH Income
Milwaukee-Racine-Kenosha MSA
Two Views of Affordability for HHs Earning AMI

462,349 Affordable Housing Units, @ H<30%

\[\rightarrow\]

313,486 Affordable Housing Units, H+T <45%

An Estimated 148,863 Affordable Housing Units Lost When Transportation Costs Are Included

Note: Affordable units based on the number of households paying <=30% for housing & <= 45% for housing + transportation. The assumption is made that each HH will occupy 1 housing unit.
Chicagoland MSA
Housing Affordability at <30% of AMI vs
Housing + Transport Affordability at <45%

Drop of 977,000 HHs from Affordability
When Transportation is Counted,
= Drop of 29.6% of Total Stock

H = 13.25 to 72.07 Percent of AMI
H + T = 34.68 to 119 Percent of AMI
Portland OR MSA
Housing Affordability at <30% AMI vs
Housing + Transportation Affordability at <45%

365,211 Fewer Affordable Units
Drop of 42.2 Percent of Total Stock
Milwaukee-Racine-Kenosha MSA
As Gas Prices Soared from $1.68 to $4.02 per Gallon
June 30 2000 vs June 30 2008

$692 to $3551 per HH per Year

$1757 to $7519 per HH per Year
Milwaukee-Racine-Kenosha MSA
Total Monthly HH Transportation Costs
June 30 2000 vs June 30 2008

$590 to $1762 per HH per Month

$747 to $2093 per HH per Month
Milwaukee-Racine-Kenosha MSA
Percentage of Income Spent on Transportation
June 30 2000 vs. June 30 2008

15.6 to 41.65 % of Income

19.42 to 42.2 % of Income
Different parts of Chicago region more exposed than others

- Varies from under $1000-1900 in Cook County to $4000-$6000 in collar counties annually
- Function of available transportation choice
- Calculated using $4/gallon and 20.3 MPG
Rethinking the Drive ‘til You Qualify Housing Market in SE Wisconsin

- On June 30 2008, Gas = $1.60/gallon, Median Income = $52,000
- 3 Cars, 35,000 VMT, No Transit, $15k/year housing = 72.8% for H+T
- 2 Cars, 25,000 VMT, No Transit, $18,684/year housing = 65.9% for H+T
- 1 Car, 15,000 VMT, $100/Month Transit, $20k/year housing = 56.5% for H+T
- 0 Car, $200/Month for Transit, $200/Month for Car-Sharing, $22k/year housing = 51.5% for H+T
A Metropolitan Area of 700,000 Households

- Assume 2 Cars per HH, 20,000 VMT
- $5,078 per vehicle-year, $0.12 per VM
- $10,156 + $2,400 = $12,556 per HH
- $8.5 Billion per Year Region-Wide
- $5.5 Billion per Year for Business Transport
- $1.5 Billion per Year Total Provided by Government ($0.6 Fed, $0.45 State, $0.45 Local)
- $15.5 Billion Total per Year
- $465 Billion Over 30 Years
The Effect of ‘Drive ‘til You Qualify’: High T Costs with Distance

Monthly Household H Cost
(In Dollars - for all Block Groups)

Monthly Household T Cost
(in dollars - for all blk grps)
It’s Not Over Yet—
- Gas Costs Keep Climbing,
- 12 month’s foreclosures
 Up 5% in Cook County IL
- Up 70% in surrounding collar counties
- Worst where income is low
 & VMT exposure is high

![Recent Residential Mortgage Foreclosures](http://example.com/foreclosures_map)

![Price of Gas](http://example.com/gas_price)

![Count of Mortgage Foreclosures](http://example.com/foreclosures_count)
Impact of Transportation Choice on Local Affordability

- Market promotes Drive ‘til you qualify
- Keeps Housing cost deceptively low, savings wiped out by high travel demand, up to 28,000 extra vehicle-miles per year
- Providing sufficient transport choice results in 1 less car
- Locating in smaller homes, lower operating costs
- Lowers 55 percent to 40-45 percent and significant emissions reductions
The Big Drop

- 25 years of measured VMT
- Moving 12-month totals
- All roads
- Note leveling or dropping 2005-present
Some Examples of Transportation Choices
Overview: TOD

- Key Trends Driving Demand for TOD
 - Demand for Transit
 - Increased Urban and Suburban Investment
 - Changes in Consumer Demands
 - Increased Benefits on Transit Locations
TOD Is:

- **Location efficiency** — Dense, transit-accessible, & pedestrian-friendly
- **Rich Mix of Choices** — Wide range of mobility, housing and shopping options
- **Value Capture** — Good service & connections, local amenities support place-making, scorekeeping & attention to financial returns
- **Place-Making** — Places for people, enriches existing qualities, provides new connections, works with landscape, builds reputation
- **Resolution of Tension between TODs as “Nodes” and “Places”** — Works to support travel networks and communities
TOD is not

- **Just for commuters** — Work-related trips just 18 percent of total travel
- **Auto-oriented transit** — Way too much land devoted to park-and-ride lots
- **Just a place to sleep at night** — People need to shop, eat, visit without getting in a car
- **Only the transit property** — All successful TODs are joint developments between cities, transit operators, private investor/owners, and communities
Transit Oriented Development

• Back to the Future
 - Development patterns of Europe, Eastern and Midwestern US
 • Walkable, mixed-use, location efficient urban development around existing or new transit—either rail or Bus rapid transit.
 - Post WWII Suburbanization
 - Auto-Dominant Development Patterns
Late 20th and 21st Centuries

- Air quality non-attainment
- Water quality and quantity problems
- Increasing costs of building major highways
- Decreasing motor fuel trust fund receipts
- Quality of life issues
- Stuck in traffic
- Auto dependent
- Family life negatives
Demographics Influencing Demand for Housing Near Transit

• Singles will soon be the new majority
• Old people will outnumber young people by mid-century
• By 2010 Echo Boomers will total 34% of the population
• Married couples with children are 24% of households
Other Demographic changes

- New immigrants
- Consumer preferences
- Revitalizations of urban communities
- Employer location strategies
Overview: H + T Affordability Index

- What is H + T Affordability Index?
- Why / Purpose
- How does it work: Model Mechanics and Background
- Who: Potential Applications
- When: Project Timeline and Index Availability
Background

• Research Findings
 - *Housing & Transportation Affordability Index Pilot*
 - CNT & Center for Transit-Oriented Development
 - Brookings Institution Urban Markets Initiative
 - *Housing/Transportation Burden on Working Households*
 - CNT & Virginia Tech
 - MacArthur Foundation and Center for Housing Policy
 - *Strategies for Diverse Transit-Oriented Neighborhoods*
 - CNT & Center for Transit-Oriented Development
 - Ford Foundation
What is the Housing + Transportation Affordability Index?

A tool to measure the 2 largest household costs – *housing and transportation* – by neighborhood.

\[
\text{H+T Index} = \frac{\text{Housing Costs} + \text{Transportation Costs}}{\text{Income}}
\]

By measuring these costs, the H+T Affordability Index is also measuring the quality, attractiveness, and convenience, of the neighborhood.
Transportation Costs Vary by Income

- Median U.S. household spent 18% of its budget on transportation.

- Lower-income households are more burdened than higher income by transportation costs:
 - $5,005/yr - 6,827/yr T
 - $9,506/yr - $12,144/yr H

- This is the traditional view but income does not explain most of the variation in household transportation costs.

Why: To Understand affordability, its impacts, and potential solutions

• Since at least 1984, Housing and Transportation have been the 2 largest household costs—consuming at least 50% of income for the average household

![Major Household Expenditures 1984-2002 chart]

Why: To Understand affordability, its impacts, and potential solutions

- The more households spend on housing and transportation, the less they have to spend on:
 - Savings
 - Education
 - Healthcare- preventive and acute
 - Entertainment
 - Retail and other goods in the local economy

- If we can define the reasons for high neighborhood transportation costs, we can understand:
 - What to build?
 - Where to build, and where to live?
 - Who benefits?
What drives H+T Costs?

- We know *housing* costs and what drives them:
 - *Location, location, location; and*
 - Housing size, construction, materials, amenities; and
 - Fees, taxes

- What about *transportation* costs?It’s more than the price at the pump or the price of the car:
 - *Location, location, location; and*
 - Car costs, annual miles, gasoline costs, transit fares
 - Household size and income

But total transportation costs by location are not reported ...until now
Background and Model Mechanics
What about Location?

- Transportation costs vary by place, depending on:
 - Access to services
 - Walkable destinations
 - Extent and frequency of transit
 - Access to jobs
 - Density

- Households who live in “location efficient” neighborhoods—regardless of size and income—
 - “own fewer vehicles and drive fewer miles, and therefore have lower transportation costs”

(Location Efficiency Study. CNT, STPP, NRDC, 2000)
Modeling the “T” of the H&T Index

We analyze the Urban Form and the Household Characteristics of neighborhoods to predict the three major components of total household transportation costs.

7 Neighborhood Variables:
1. HHS/residential acre (net density)
2. HHS/total acre (gross density)
3. Avg. block size in acres
4. Transit Connectivity Index
5. Distance to employment centers
6. Job density
7. Access to amenities

2 Household Variables
1. Household income
2. Household size

 Autos Owned + Auto Use + Transit Use

Can be adjusted to current prices, fares, auto types

x price = /unit

Total Transport Cost
Independent Local Environment Variables – Density Measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households per residential acre</td>
<td>Census 2000</td>
</tr>
<tr>
<td>Households per total acre</td>
<td>Census 2000</td>
</tr>
</tbody>
</table>
Independent Local Environment Variables – Mobility

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average block size in acres</td>
<td>Census/ TIGER/Line®</td>
</tr>
<tr>
<td>Transit Connectivity Index</td>
<td>FTA 1995 Bus Routes Transit Database, local transit agency system data</td>
</tr>
<tr>
<td>Access to amenities</td>
<td>Service jobs in CTPP 2000</td>
</tr>
</tbody>
</table>

Image Description:
- The map shows block size in acres with different color codes indicating size ranges:
 - 0 to 2.5 acres
 - 2.5 to 5 acres
 - 5 to 10 acres
 - 10 or more acres

Source: U.S. Census Bureau, TIGER/Line Files
Independent Local Environment Variables – Mobility

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average block size in acres</td>
<td>Census/TIGER/Line®</td>
</tr>
<tr>
<td>Transit Connectivity Index</td>
<td>FTA 1995 Bus Routes Transit Database, local transit agency system data</td>
</tr>
</tbody>
</table>
Independent Local Environment Variables – Mobility

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average block size in acres</td>
<td>Census/TIGER/Line®</td>
</tr>
<tr>
<td>Transit Connectivity Index</td>
<td>FTA 1995 Bus Routes Transit Database, local transit agency system data</td>
</tr>
<tr>
<td>Access to amenities</td>
<td>Service jobs in CTPP 2000</td>
</tr>
</tbody>
</table>

Source: The Census Transportation Planning Package (CTPP) 2000
Independent Local Environment Variables – Access to Jobs and Amenities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Employment Centers</td>
<td>Census Transportation Planning Package (CTPP) 2000</td>
</tr>
<tr>
<td>Job Density - Number of jobs per square mile</td>
<td>Jobs and locations from CTPP 2000</td>
</tr>
<tr>
<td>Access to amenities</td>
<td>Service jobs in CTPP 2000</td>
</tr>
</tbody>
</table>

Source: The Census Transportation Planning Package (CTPP) 2000
Independent Household Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Model Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Income</td>
<td>Census 2000</td>
<td>Influences auto ownership and use</td>
</tr>
<tr>
<td>Household Size</td>
<td>Census 2000</td>
<td>Influences auto ownership and use</td>
</tr>
</tbody>
</table>

Autos/Household

![Residuals from Subtracting the Average](image1)

![Residuals from Subtracting the Average](image2)
Dependent Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Ownership Costs</td>
<td>Modeled from independent household and local environment variables</td>
</tr>
<tr>
<td>(vehicles per household)</td>
<td></td>
</tr>
<tr>
<td>Auto Use Costs</td>
<td>Modeled using the 2001 NHTS reported VMT fitted to the independent variables</td>
</tr>
<tr>
<td>(annual miles driven per household)</td>
<td></td>
</tr>
<tr>
<td>Transit Costs</td>
<td>Modeled from independent household and local environment variables</td>
</tr>
<tr>
<td>(Rides per day)</td>
<td></td>
</tr>
</tbody>
</table>
Optimizing the Model

• Combining the variables into a model:
 - Multiple regression modeling to “fit” each of the 3 dependent variables to the 7 independent urban form variables;
 - Then same modeling is used to “fit” the 2 household variables to the 7 urban independent variables;
 - for a total of 21 fits to create the pilot model

• Model development corroborates with Location Efficiency Study:
 - The 7 urban form variables, and the two household variables were all needed to optimize the model;
 - the Urban Form variables are more important than Household variables (in large urban areas)
Seven Urban Form Variables VS. Auto Ownership

- Residuals from Subtracting the Average
 - HH/Residential Acre
 - Transit Connectivity Index
 - Retail Jobs per Square Mile
 - Distance to Employment Center
 - Block Size (acre)

Job_bin

Svc_bin
Model Mechanics

• Example of fit for Auto Ownership:

“Fit” Example for an Independent Variable

At 8 HH/Acres auto ownership reduced by 1 car

Fit of HH Variable Controlling for Local Environment Variables

Household Variable

Controlling for Local Environment Variables

Residual of Auto Ownership

Median Household Income

Households /Residential acre
Key Findings

- Housing and transportation gives more complete picture of affordability than just housing alone.
- Transportation costs are driven more by neighborhood characteristics than by household size or income.
- Housing and transportation affordability requires multiple and targeted strategies and coordination.
- Underutilized transit stations present an opportunity for more affordable and diverse neighborhoods.
Range of Energy Intensities for Local/Regional Transport Options

- Bicycles: 200 BTU/Passenger-Mile
- Moped/Scooter: 400 BTU/Passenger-Mile
- Rail Rapid Transit: 500 BTU/Passenger-Mile
- Plug In Hybrid Electric: 911 BTU/Passenger-Mile
- Light Rail: 1000 BTU/Passenger-Mile
- Vans: 1100 BTU/Passenger-Mile
- Yank: 1153 BTU/Passenger-Mile
- Commuter Rail Electric: 1294 BTU/Passenger-Mile
- Motorcycles: 1536 BTU/Passenger-Mile
- Commuter Rail Diesel: 1750 BTU/Passenger-Mile
- Air: 1800 BTU/Passenger-Mile
- Personal Truck: 2355 BTU/Passenger-Mile
- Diesel Local Buses: 2569 BTU/Passenger-Mile
- Compressed Natural Gas: 3496 BTU/Passenger-Mile
- Trains: 4057 BTU/Passenger-Mile
- Diesel: 4323 BTU/Passenger-Mile
<table>
<thead>
<tr>
<th>Mode</th>
<th>Carrying Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles in Streets</td>
<td>800</td>
</tr>
<tr>
<td>Automobiles in Highways</td>
<td>1500</td>
</tr>
<tr>
<td>Local Bus - Single</td>
<td>4500</td>
</tr>
<tr>
<td>Local Bus - Articulated</td>
<td>7500</td>
</tr>
<tr>
<td>Regional Bus</td>
<td>9500</td>
</tr>
<tr>
<td>Rapid Transit Single</td>
<td>10500</td>
</tr>
<tr>
<td>Light Rail</td>
<td>12000</td>
</tr>
<tr>
<td>Streetcar - Double</td>
<td>21000</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>35000</td>
</tr>
<tr>
<td>Rail Rapid Transit</td>
<td>62000</td>
</tr>
</tbody>
</table>

The chart illustrates the carrying capacities for various local and regional transport options, showing the hourly passengers per lane-direction.
STREETCARS ARE DEVELOPMENT-ORIENTED TRANSIT

Developers say that the permanence of the fixed guideway helps mitigate the risk, and the higher densities and lower parking ratios typically permitted in downtowns make projects more profitable. These densities would not be possible, however, if there was no streetcar. Before the alignment was selected for the Portland streetcar land in the Pearl only captured 19 percent of all development in the CBD; after it was chosen the land captured 55 percent.

<table>
<thead>
<tr>
<th></th>
<th>Start of Service</th>
<th>Initial Track Miles</th>
<th>Initial System Cost Per Mile</th>
<th>Initial System Cost</th>
<th>Development Investment</th>
<th>Return on Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenosha</td>
<td>2000</td>
<td>2.0</td>
<td>3.10</td>
<td>6.20</td>
<td>150</td>
<td>2319.35%</td>
</tr>
<tr>
<td>Little Rock</td>
<td>2004</td>
<td>2.5</td>
<td>7.84</td>
<td>19.60</td>
<td>200</td>
<td>920.41%</td>
</tr>
<tr>
<td>Tampa</td>
<td>2003</td>
<td>2.4</td>
<td>20.13</td>
<td>48.30</td>
<td>1000</td>
<td>1970.39%</td>
</tr>
<tr>
<td>Portland (1)</td>
<td>2001</td>
<td>4.8</td>
<td>11.50</td>
<td>55.20</td>
<td>1046</td>
<td>1794.93%</td>
</tr>
<tr>
<td>Portland (Ext.)</td>
<td>2005</td>
<td>1.2</td>
<td>14.83</td>
<td>17.80</td>
<td>1353</td>
<td>7501.12%</td>
</tr>
</tbody>
</table>

Source: Reconnecting America

TABLE 1: Private Returns on the Public Investment
Urban Form Supports Low-Carbon Travel: A Convenient Remedy to an Inconvenient Truth

- Chicago area has dense networks of sidewalks and streets
- The higher the connectivity, the lower the CO2 per HH
- Supports walking, biking, mixed-use land uses
- Helps avoid unnecessary car trips
- Cited in recent studies, awards

Courtesy Larry Frank, Steve Winkelmann
Location Efficiency & the Transect Reveals Carbon Benefits of Good Urban Form

This Place Has the Disappearing Carbon Blues...♫

Source: Duany Plater-Zyberk and Company

Transport Carbon in Tons of CO2/HH/Year

- 9.7 - 14.6
- 5.8 - 10.7
- 3.9 - 6.1
- 2.4 - 4.4
- 0 - 2.43

Location Efficiency & the Transect Reveals Carbon Benefits of Good Urban Form
Two Views of Cities and CO2 in the Milwaukee-Racine-Kenosha Metro Area—Changes “Cities are the Problem” to “Cities Are the Solution”

0.45 to 94.73 Tons of CO2/Acre

2.55 to 10.55 Tons of CO2/HH
Calgary CA—500 passengers, 5-25 miles, 15-40 minute trips, no oil, zero GHGs—1st 100% Wind Powered Transit System
Dresden—Revived old US practice of using transit assets to solve local freight challenge
Avenue B Trolley from River North Charrette—Low-Rise, High Density, Mixed-Use Character
Electric Trolley Buses

- Can operate on trolley lines or independently
- Same cost as hybrid diesels
- More fuel efficient
- Operating in Seattle, Boston, Philly, SF, Vancouver
- 10-15% more revenue/bus
Why Not Just Add Better Buses? We Will, But We Also Need Transit That Can

- Generate private financing
- Organize development
- Deeply reduce emissions & fuel cost exposure
- Attract tourists and occasional riders
- Offer “legibility”
- Operate better in pedestrian environments.
WHY STREETCARS AND WHY NOW?
BECAUSE STREETCARS ARE:

- relatively inexpensive — recent streetcar systems have ranged in price from $6 million (Kenosha) to $55 million (Portland, Phase 1)
- uniquely suited to serve all the higher-density development occurring in downtowns across the U.S.
- hugely successful in promoting intense development and vibrant streetlife
- easily integrated into built environments because they can run in mixed traffic and share stops with buses (and don’t require the massive infrastructure of stations, parking structures, bus bays and exclusive rights-of-way that make bigger rail systems difficult and expensive to build)
- and they feed regional transit systems, making transit more convenient by providing the “last mile” connection.
• Streetcar links several distinct districts
• Fares interchangeable with TriMet LRT and bus and with South Waterfront Tram
• $1.75 or $100 annual
• Operated by Portland Streetcar Inc.
• Runs every 13 minutes
THE STREETCAR WAS A WATERSHED EVENT IN PORTLAND’S DOWNTOWN

In the Pearl:

- 100 projects worth $2.3 billion, including 7,248 housing units and 4.6 million sq. ft. of commercial space
- 25 percent of housing is affordable
- Developers built at 90 percent of allowable density next to the line, twice as high as 3 blocks and further away
- Portland achieved its 20-year housing goal in 7 years, and issued a record number of building permits 7 years in a row

In South Waterfront:

- Connects to downtown via streetcar and to OHSU via aerial tram
- An even more ambitious redevelopment effort with 5,000 jobs and 3,000 housing units planned
- 4 residential towers are out of the ground
Portland South Waterfront Opening 2007

- Serves residential, recreational, business, institutional uses
- Links to LRT, bus and aerial tram
- Mixed income, mixed use TOD
Filling In Missing Links by Adding Streetcar Circulation—Mixed Use/Mixed Income
Reduced Portland VMT & Transport Carbon 67%
Part of Portland Climate Plan (From Street Smart, CTOD 2006)

Kenosha WI—State DOT Paying for Expansion

Oregon Governor Kulongonski At Recent Streetcar Opening

STREETCARS ARE DEVELOPMENT-ORIENTED TRANSIT

DEVELOPERS SAY THAT the permanence of the fixed guideway helps mitigate the risk, and the higher densities and lower parking ratios typically permitted in downtowns make projects more profitable. These densities would not be possible, however, if there was no streetcar. Before the alignment was selected for the Portland streetcar land in the Pearl only captured 19 percent of all development in the CBD; after it was chosen the land captured 55 percent.

<table>
<thead>
<tr>
<th>City</th>
<th>Start of Service</th>
<th>Initial Track Miles</th>
<th>Initial System Cost Per Track Mile</th>
<th>Initial System Cost</th>
<th>Development Investment</th>
<th>Return on Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenosha</td>
<td>2000</td>
<td>2.0</td>
<td>3.10</td>
<td>6.20</td>
<td>150</td>
<td>2319.35%</td>
</tr>
<tr>
<td>Little Rock</td>
<td>2004</td>
<td>2.5</td>
<td>7.86</td>
<td>19.60</td>
<td>200</td>
<td>920.41%</td>
</tr>
<tr>
<td>Tampa</td>
<td>2003</td>
<td>2.4</td>
<td>20.13</td>
<td>48.30</td>
<td>1000</td>
<td>1970.39%</td>
</tr>
<tr>
<td>Portland (1)</td>
<td>2001</td>
<td>4.8</td>
<td>11.50</td>
<td>55.20</td>
<td>1046</td>
<td>1794.93%</td>
</tr>
<tr>
<td>Portland (Ext.)</td>
<td>2005</td>
<td>1.2</td>
<td>14.83</td>
<td>17.80</td>
<td>1353</td>
<td>7501.12%</td>
</tr>
</tbody>
</table>

Source: Reconnecting America

TABLE 1: Private Returns on the Public Investment
LESSONS LEARNED IN PORTLAND

- One or more large development sites are needed with owners willing to work with the public sector.
- Master development agreements can be used to leverage significant public benefits.
- Local improvement districts can help fund the streetcar and other public improvements.
- Involving stakeholders is critical. Without public support projects of this magnitude can get bogged down.

- The success of early projects demonstrated market demand for higher-density housing with greatly reduced parking.
- Higher-density development does not always equate to a livable community. Affordable housing, high-quality urban design and public art are necessary.
KENOSHA: SMALL TRANSIT FOR SMALL CITIES

- As in Portland, the streetcar connected Kenosha’s downtown with a large redevelopment site.
- The city dusted off a 1925 plan to connect downtown and the waterfront with a grand boulevard, sidewalks and streetcars, and created a new neighborhood on the waterfront.
- The streetcar runs between this new development and a Metra commuter rail station with service into Chicago.
- Kenosha is growing rapidly as people leave Chicago in search of more affordable housing. The streetcar enables Kenosha to accommodate this growth sustainably and without significant increases in traffic.
Seattle South Lake Union Streetcar

- Large waterfront development at north end of downtown
- Developer wanted link to main rail station
- Started December 2007
- City holding hearings on four more routes
Tandem Economic Benefits

• Reduced household cost of living, 10 to 20 percent of income tax-free
• Increased savings rate and wealth creation
• Increased property values and reliable improved tax base
• Reduced travel delays
• Improved use of scarce public capital
Big Opportunities to Get this Right Regionally

• Highway re-build choices
• Build out streetcar and electric trolley bus systems
• Provide creative local choices—car-sharing, incent better local shopping choices
• Link all this to household information systems for real time feedback
Observations

- Transportation costs families about as much as housing
- This cost is excluded from everyday decisions and public policies
- Compounds financial stress
- Current proposals to mitigate mortgage crisis don’t take transportation costs into account
- Crisis isn’t over yet, gas prices are rising, and drive ‘til you qualify seems part of the landscape
Looking Ahead

- Foreclosures in metro areas increasingly suburban
- Improved counseling to include transportation costs + linkages to alt services
 - Adopt Location Efficient Mortgages®
- Continued airline distress and dependence on short-trip intercity travel
 - Secure intercity coach service at airport curbs
 - Develop air-rail service
- Transit operators have record demand but can’t afford fuel prices
 - Help with fuel purchases and/or price hedging
 - Help restructure transit operators to qualify for federal financial services industry bailout assistance
A Ladder of Opportunity

Lead the Chorus: Reconnected, Vital, “Cool” and a Framework that the Market Is Seeking

Manage the Course: Build Capacity to React To Changing Market

Stay the Course: Disconnected, More of the Same
Significant Trends We Cannot Avoid

- Energy prices—peak oil within 5 and possibly 2 years; today’s oil price will rise to between $177 and $504/barrel as early as 2012
- Climate change—increased electricity demand, crop cycle disruption, limits on water supplies and shipping season, possible limits on aviation
- Demographics—aging population, smaller households, immigration
- Technology—continued automation, information system integration
- Workforce—Demand for trained and skilled growing in excess of capacity
- Globalization—competition increasingly Bangalore and Shanghai not just Los Angeles, Phoenix and New York
Buy Cars or Build Wealth?

- Car sales and savings move in opposite directions

- Will Rogers—"We’ll be the first generation in the history of the planet that drove to the poorhouse in an automobile" (1931)

No-cost car loans after 9/11 Made it worse
Thank You!

- jacky@cnt.org
- www.cnt.org
- http://htaindex.cnt.org